Abstract:
From a bit stream, at least the following are decoded: a stereoscopic image of first and second views; a maximum positive disparity between the first and second views; and a minimum negative disparity between the first and second views. In response to the maximum positive disparity violating a limit on positive disparity, a convergence plane of the stereoscopic image is adjusted to comply with the limit on positive disparity. In response to the minimum negative disparity violating a limit on negative disparity, the convergence plane is adjusted to comply with the limit on negative disparity.
Abstract:
The present disclosure relates to a parabolic trough concentrator to harness the sun's energy. The parabolic trough concentrator 5 comprises a trough concentrator structure 6, two semi-rigid reflecting sheets 50, a receiver 60, a support stand 80 and a telescopic mechanism 90. The parabolic trough concentrator 5 is designed to have a large reflecting surface area when it is in its extended state, and have a very compact footprint when it is disassembled, folded and collapsed to its retracted state.
Abstract:
Stabilized air filters formed from mats of crosslinked protein-containing fibers are provided. The fibers are formed into a mat with pores that allow air to pass through while physically filtering particulate matter. The protein in the protein-containing fibers also serves to chemically filter polluted air passed through the filter. Specifically, chemical functional groups from the many amino acids that comprise the protein of the protein-containing nanowire react with certain chemical pollutants (e.g., carbon monoxide and formaldehyde) in order to capture or otherwise neutralize the pollutant. Accordingly, the single fiber mat performs two filtering functions. Methods for making the air filters from crosslinked protein-containing nanofibers are also provided.
Abstract:
A method, apparatus and computer program product are provided facilitating flexible time sharing among systems. A method and apparatus may generate a secondary component carrier transmission plan including planned on and off durations. The planned on durations correspond to a time period for an apparatus and devices to communicate via an unlicensed band of the secondary component carrier. The planned off durations correspond to a time interval in which the devices may deactivate from the unlicensed band or remain disconnected from the unlicensed band. The method and apparatus may also enable provision of the plan to the devices via a licensed band of a primary component carrier and detecting a medium of the unlicensed band prior to the expiration of the time period to determine whether the medium is available in order to decide whether to turn on transmissions to the unlicensed band after one of the planned off durations.
Abstract:
A method, apparatus and computer program product are provided for enabling efficient allocation of discovery resources for device to device communications. An example method may comprise establishing a cellular network connection to an access point. The method may further comprise establishing a local area network connection to a user equipment. Additionally, the method may comprise either receiving offloaded data for the user equipment from the access point via the cellular network connection and relaying the offloaded data to the user equipment via the local area network connection, or receiving offloaded data for the access point from the user equipment via the local area network connection and relaying the offloaded data to the access point via the cellular network connection. Similar and related example methods, example apparatuses, and example computer program products are also provided.
Abstract:
A method includes determining one of a multiplicity of subframes in a resource space in which a shortened subframe is to be communicated. Each of the subframes has a predetermined number of symbol positions. The resource space includes the multiplicity of subframes. The method includes communicating the shortened subframe in the determined subframe. The shortened subframe has a multiplicity of active symbols at first symbol positions in the determined subframe and has a multiplicity of blanked symbols at second symbol positions in the determined subframe. In an embodiment, each of the subframes is a first subframe carried on subcarrier. The resource space corresponds to a special subframe in a frame including the special subframe and a multiplicity of second subframes. The special subframe and the plurality of second subframes are located in different timeslots. Apparatus, computer programs, and program products are also disclosed.
Abstract:
The present invention relates to methods, apparatuses and a computer program product for an enhanced discovery channel for interworking between a cellular wide-area communication system and a wireless local-area communication system. The present invention includes inserting, in a discovery channel, information indicating an interworking capability of a small cell base station between a cellular wide-area communication system and a wireless local-area communication system, and transmitting, by the base station, the discovery channel including the information to a user equipment located in the small cell.
Abstract:
There are provided measures for information exchange for cellular non-cellular interworking such as for example LTE/UTRA-WiFi interworking. Such measures may exemplarily comprise measures for reporting, e.g. from an access point of a non-cellular local-area communication system or a terminal being served in a cellular wide-area communication system, information about at least one access point of the non-cellular local-area communication system to a radio access network level of the cellular wide-area communication system, and performing, at the radio access network level of the cellular wide-area communication system, traffic offloading management for at least one terminal being served in the cellular wide-area communication system to enable offloading of terminal-related traffic from the cellular wide-area communication system to the non-cellular local-area communication system on the basis of the obtained access point information.
Abstract:
A wireless communication method of establishing and maintaining a cell cluster comprising at least one cell configured to communicate with at least one UE (User Equipment), comprising detecting a broadcast beacon signal. The method further comprises, in response to an absence of the broadcast beacon signal, assuming the role of a cluster head of a cluster having a specific intra-cell identifier, and broadcasting a beacon signal. In response to detecting the broadcast beacon signal and an absence of an intra-cell identifier, continuing to transmit and receive using a prior duplex communication configuration. Further, in response to detecting the broadcast beacon signal and a presence of the intra-cell identifier, joining the cell identified by the detected intra-cell identifier, and setting its intra-cell identifier based on the detected intra-cell identifier.
Abstract:
In one embodiment, a device maintains a predetermined number of high-priority subcarriers for use in communicating high-priority data frames and a predetermined number of low-priority subcarriers for use in communicating low-priority data frames. A data frame is received and a data frame priority is determined for the data frame. If the data frame is determined to be a low-priority data frame, a minimum number of subcarriers, from the low-priority subcarriers, required for communication of the data frame is determined and the data frame is communicated using the minimum number of subcarriers. If the data frame is determined to be a high-priority data frame, a maximum number of subcarriers available, including the high-priority subcarriers and the low-priority subcarriers, is determined and the data frame is communicated using the maximum number of subcarriers.