摘要:
The invention relates to a method for producing hardened structural parts from sheet steel. The method includes shaping at least one shaped part made of sheet steel provided with a cathodic corrosion protection coating, performing any required final trim of the shaped part and possibly any required punching, or the creation of a perforation pattern, subsequently heating the shaped part, at least over partial areas, under the admission of atmospheric oxygen to a temperature which permits austenizing of the steel material, and thereafter transferring the structural part to a mold-hardening tool and performing mold-hardening in the mold-hardening tool, wherein the structural part is cooled by the contact with and pressing by the mold-hardening tool and is hardened thereby.
摘要:
The invention relates to a method for the production and removal of a temporary protective layer for a cathodic coating, particularly for the production of a hardened steel component with an easily paintable surface, wherein a steel sheet made of a hardenable steel alloy is subjected to a preoxidation, wherein said preoxidation forms a FeO layer with a thickness of 100 nm to 1,000 nm and subsequently a melt dip coating is conducted, wherein, during the melt dip coating, a zinc layer is applied having a thickness of 5 to 20 μm, preferably 7 to 14 μm, on each side, wherein the melt dip process and the aluminum content of the zinc bath is adjusted such that, during the melt dip coating, an aluminum content for the barrier layer results of 0.15 g/m2 to 0.8 g/m2 and the steel sheet or sheet components made therefrom is subsequently heated to a temperature above the austenitizing temperature and is then cooled at a speed greater than the critical hardening speed in order to cause hardening, wherein oxygen-affine elements are contained in the zinc bath for the melt dip coating in a concentration of 0.10 wt.-% to 15 wt.-% that, during the austenitizing on the surface of the cathodic protective layer, form a thin skin comprised of the oxide of the oxygen-affine elements and said oxide layer is blasted after hardening by irradiation of the sheet component with dry ice particles.
摘要翻译:本发明涉及一种生产和除去阴极涂层的临时保护层的方法,特别是用于生产具有容易涂漆的表面的硬化钢部件,其中由可硬化的钢合金制成的钢板经受 预氧化,其中所述预氧化形成厚度为100nm至1000nm的FeO层,随后进行熔融浸涂,其中在熔融浸涂期间,施加厚度为5至20μm的锌层,优选 在每一侧上为7至14μm,其中熔融浸渍工艺和锌浴的铝含量被调节,使得在熔融浸涂期间,阻挡层的铝含量为0.15g / m 2至0.8g / m2,然后将由此制成的钢板或片材组件加热到高于奥氏体化温度的温度,然后以大于临界硬化速度的速度冷却以引起硬化 ,其中在用于熔融浸涂的锌浴中含有氧亲和元素,其浓度为0.10重量%至15重量%,在阴极保护层表面的奥氏体化期间形成薄的皮肤 由氧化仿生元素的氧化物构成,并且所述氧化物层通过用干冰颗粒照射片材组分而硬化后喷丸。
摘要:
The invention relates to a method for producing a hardened profiled structural part from a hardenable steel alloy with cathodic corrosion protection. The method includes applying a coating to a sheet made of a hardenable steel alloy, wherein the coating comprises zinc, and the coating further comprises one or several elements with affinity to oxygen in a total amount of 0.1 weight-% to 15 weight-% in relation to the total coating. After applying the coating, the coated sheet steel is roller-profiled in a profiling device. Thereafter, the coated sheet steel is heated to a structural change required for hardening. A skin made of an oxide of the element(s) with affinity to oxygen is formed on the surface of the coating. After sufficient heating the sheet is cooled, wherein the rate of cooling is set in such a way that hardening of the sheet alloy is achieved.
摘要:
The invention relates to a method for producing a sheet metal component. A hot or cold strip is electrolytically coated or coated in a smelting bath and the thus coated hot or cold strip is subjected to a flexible rolling process. During said process, sheet metal having various thicknesses of the flexibly rolled steel strips are produced due to various rolling pressures. Said invention is characterized in that in accordance with the thickness of the sheet metal after being rolled in a flexible manner or in accordance with the rolling pressure during flexible rolling, either the coating whilst being coated has various thicknesses, and in accordance with the rolling pressure with increasing rolling pressure that is expected, the thickness of the coating is thicker and/or the coating prior to or after the flexible rolling is subjected to a mechanical or chemical surface treatment for adjusting the desired emissivity or heat absorption capacity.
摘要:
The invention relates to a method for producing a hardened profiled structural part from a hardenable steel alloy with cathodic corrosion protection. The method includes applying a coating to a sheet made of a hardenable steel alloy, wherein the coating comprises zinc, and the coating further comprises one or several elements with affinity to oxygen in a total amount of 0.1 weight-% to 15 weight-% in relation to the total coating. After applying the coating, the coated sheet steel is roller-profiled in a profiling device, so that the sheet tape is formed into a roller-formed profiled strand. Thereafter, the coated sheet steel is brought, at least in parts and with the admission of atmospheric oxygen, to a temperature required for hardening and is heated to a structural change required for hardening. A skin made of an oxide of the element(s) with affinity to oxygen is formed on the surface of the coating. After sufficient heating the sheet is cooled, wherein the rate of cooling is set in such a way that hardening of the sheet alloy is achieved. The invention further relates to a corrosion-protection layer and a profiled structural element.
摘要:
The invention relates to a method for producing a hardened steel part having a cathodic corrosion protection, whereby a) a coating is applied to a sheet made of a hardenable steel alloy in a continuous coating process; b) the coating is essentially comprised of zinc; c) the coating additionally contains one or more oxygen-affine elements in a total amount of 0.1% by weight to 15% by weight with regard to the entire coating; d) the coated steel sheet is then, at least in partial areas and with the admission of atmospheric oxygen, brought to a temperature necessary for hardening and is heated until it undergoes a microstructural change necessary for hardening, whereby; e) a superficial skin is formed on the coating from an oxide of the oxygen-affine element(s), and; f) the sheet is shaped before or after heating, and; g) the sheet is cooled after sufficient heating, whereby the cooling rate is calculated in order to achieve a hardening of the sheet alloy. The invention also relates to a corrosion protection layer for the hardened steel part and to the steel part itself.
摘要:
The invention relates to a method for the production and removal of a temporary protective layer for a cathodic coating, particularly for the production of a hardened steel component with an easily paintable surface, wherein a steel sheet made of a hardenable steel alloy is subjected to a preoxidation, wherein said preoxidation forms a FeO layer with a thickness of 100 nm to 1,000 nm and subsequently a melt dip coating is conducted, wherein, during the melt dip coating, a zinc layer is applied having a thickness of 5 to 20 μm, preferably 7 to 14 μm, on each side, wherein the melt dip process and the aluminum content of the zinc bath is adjusted such that, during the melt dip coating, an aluminum content for the barrier layer results of 0.15 g/m2 to 0.8 g/m2 and the steel sheet or sheet components made therefrom is subsequently heated to a temperature above the austenitizing temperature and is then cooled at a speed greater than the critical hardening speed in order to cause hardening, wherein oxygen-affine elements are contained in the zinc bath for the melt dip coating in a concentration of 0.10 wt.-% to 15 wt.-% that, during the austenitizing on the surface of the cathodic protective layer, form a thin skin comprised of the oxide of the oxygen-affine elements and said oxide layer is blasted after hardening by irradiation of the sheet component with dry ice particles.
摘要:
The invention relates to a method for producing a sheet metal component. A hot or cold strip is electrolytically coated or coated in a smelting bath and the thus coated hot or cold strip is subjected to a flexible rolling process. During said process, sheet metal having various thicknesses of the flexibly rolled steel strips are produced due to various rolling pressures. Said invention is characterized in that in accordance with the thickness of the sheet metal after being rolled in a flexible manner or in accordance with the rolling pressure during flexible rolling, either the coating whilst being coated has various thicknesses, and in accordance with the rolling pressure with increasing rolling pressure that is expected, the thickness of the coating is thicker and/or the coating prior to or after the flexible rolling is subjected to a mechanical or chemical surface treatment for adjusting the desired emissivity or heat absorption capacity.
摘要:
The invention relates to a method for producing a hardened steel part having a cathodic corrosion protection, whereby a) a coating is applied to a sheet made of a hardenable steel alloy in a continuous coating process; b) the coating is essentially comprised of zinc; c) the coating additionally contains one or more oxygen-affine elements in a total amount of 0.1% by weight to 15% by weight with regard to the entire coating; d) the coated steel sheet is then, at least in partial areas and with the admission of atmospheric oxygen, brought to a temperature necessary for hardening and is heated until it undergoes a microstructural change necessary for hardening, whereby; e) a superficial skin is formed on the coating from an oxide of the oxygen-affine element(s), and; f) the sheet is shaped before or after heating, and; g) the sheet is cooled after sufficient heating, whereby the cooling rate is calculated in order to achieve a hardening of the sheet alloy. The invention also relates to a corrosion protection layer for the hardened steel part and to the steel part itself.
摘要:
The invention relates to a method for manufacturing a steel strip with a cathodic corrosion protection coating, in which the steel strip is hot rolled and then cold rolled; the steel strip is subjected to an electrolytic galvanization and after the electrolytic galvanization, the steel strip is heat treated in a bell-type annealing furnace at temperatures of 250° C. to 350° C. for a period of 4 to 48 hours and this produces a zinc/iron layer.