Abstract:
A method for controlling a robot and/or an autonomous driverless transport system on the basis of a sensor-based identification of objects includes generating. Point pair features of the 2D surface contours on the basis of 2D surface contours of the objects to be identified. A point cloud of the environment is acquired using a distance sensor, a surface normal is estimated for each point, and corresponding point pair features of the environment are generated. In a voting method, environment features are compared with model features to efficiently generate pose hypotheses, which are subjected to an optimization and a consistency check in order to ultimately be accepted or rejected as an acquisition.
Abstract:
A vehicle and a method for determining a calibration parameter of a vehicle, in particular, of a driverless transport vehicle. The vehicle includes a controller and first and second sensors. Structures proximate the vehicle are detected by the first and second sensors, and the controller determines whether the structures detected by the respective sensors at least partly match. A relative position of the first sensor with respect to the second sensor is calculated based on detected matching structures, and a calibration parameter is determined using the calculated relative position.
Abstract:
A vehicle combination and a method for forming and operating a vehicle combination that includes at least first and second autonomous vehicles. Each of the autonomous vehicles is configured to automatically control its motions in a state wherein the first and second autonomous vehicles do not form the vehicle combination. When the vehicle combination is formed, the two autonomous vehicles are connected via a communications connection and the first autonomous vehicle automatically controls the motion of the second autonomous vehicle via the communication connection.
Abstract:
A vehicle combination and a method for forming and operating a vehicle combination that includes at least first and second autonomous vehicles. Each of the autonomous vehicles is configured to automatically control its motions in a state wherein the first and second autonomous vehicles do not form the vehicle combination. When the vehicle combination is formed, the two autonomous vehicles are connected via a communications connection and the first autonomous vehicle automatically controls the motion of the second autonomous vehicle via the communication connection.