Abstract:
An image forming apparatus includes first, second, and third acquisition processing portions. The first acquisition processing portion acquires the potential value of a charged area, charged by the charging member, on the image-carrying member. The second acquisition processing portion acquires a state value regarding the state of a surface layer of the image-carrying member based on the potential value of the charged area acquired by the first acquisition processing portion and the current value of a charging current flowing through the charging member during formation of the charged area. The third acquisition processing portion acquires the electrical resistance value of the transfer member based on the state value acquired by the second acquisition processing portion, the voltage value of a transfer voltage applied to the transfer member, and the current value of a transfer current flowing through the charged area in response to application of the transfer voltage.
Abstract:
An image forming apparatus includes an amorphous silicon photosensitive member, a developing device including a developer carrying member that carries a two-component developer, and a control portion. When a potential difference V0−Vdc between the photosensitive member and the developer carrying member has a first potential difference at which the toner is moved from the developer carrying member to the photosensitive member and a second potential difference at which the toner is moved from the photosensitive member to the developer carrying member, the control portion adjusts V0 or Vdc so that the first potential difference and the second potential difference are equal in value and opposite in polarity, and a first development current |Ia| that flows at the first potential difference and a second development current |Ib| that flows at the second potential difference satisfy 1.9×10−2≥|Ib|/N≥5.7×103 [μA/mm].
Abstract:
An image forming apparatus includes first, second, and third acquisition processing portions. The first acquisition processing portion acquires the potential value of a charged area, charged by the charging member, on the image-carrying member. The second acquisition processing portion acquires a state value regarding the state of a surface layer of the image-carrying member based on the potential value of the charged area acquired by the first acquisition processing portion and the current value of a charging current flowing through the charging member during formation of the charged area. The third acquisition processing portion acquires the electrical resistance value of the transfer member based on the state value acquired by the second acquisition processing portion, the voltage value of a transfer voltage applied to the transfer member, and the current value of a transfer current flowing through the charged area in response to application of the transfer voltage.
Abstract:
An image forming apparatus includes a developing member, a first detection processing portion, and an acquisition processing portion. The developing member conveys developer to a facing portion between the developing member and the image-carrying member. The first detection processing portion detects a first development current for each of a plurality of specific voltages with different DC voltage values applied to the developing member, the first development current flowing, in response to application of the specific voltages, through the facing portion including the developer and a specific exposed area, formed by the light emitting portion, on the image-carrying member. The acquisition processing portion acquires a potential value of the specific exposed area based on the DC voltage values of the specific voltages and current values of the first development current, detected by the first detection processing portion, corresponding to the respective specific voltages.
Abstract:
Provided is an image forming apparatus having a simple configuration capable of measuring a toner current included in a developing current and accurately calculating a toner charge amount based on the measurement result. A developing device has a developer carrier that carries a two-component developer including a magnetic carrier and toner. A developing voltage power supply applies a developing voltage obtained by superimposing an AC voltage on a DC voltage on the developer carrier. A control unit estimates a toner charge amount based on a toner current calculated by subtracting a carrier current from a developing current detected by a current detecting unit when a reference image is formed during non-image formation, and a toner developing amount calculated from the density of a reference image detected by a density detecting device.
Abstract:
An image forming apparatus includes: a development device which develops an electrostatic latent image formed on a photosensitive drum into a toner image; a charger which charges the photosensitive drum; a development power supply which applies a bias voltage to the development device; an electric current measuring section which measures a development current flowing in the development device; and a calculating section which calculates a surface potential of the photosensitive drum based on the development current. The charger applies charging biases to the photosensitive drum. The electric current measuring section measures a corresponding value of the development current for each development bias voltage applied to the development device. The calculating section calculates, per charging bias, a development bias voltage at which the development current stops flowing as the surface potential, and calculates a correspondence between the surface potential and the charging bias based on calculated values of the surface potential.
Abstract:
A mode controller outputs a characteristic value according to a DC component of a developing current measured by an ammeter at a predetermined measurement timing. The measurement timing is defined as a timing at which a non-image forming region of a surface of a photosensitive drum is located opposite to a developing roller in the entirety of an axial direction and an electric field in a direction in which a toner moves from the photosensitive drum toward the developing roller by a potential difference between a surface potential of the photosensitive drum and the DC component of a developing bias is formed in a developing nip part. A determining section determines an execution timing for a charge amount acquisition operation according to the characteristic value output by the mode controller.
Abstract:
An image forming apparatus includes a storage unit and a charging amount acquisition unit. The charging amount acquisition unit forms a measurement toner image on the image carrier while changing the frequency of the alternating current voltage of the development bias, acquires a tilt of a measurement straight line representing a relationship between the change amount of the frequency and a density change amount of the measurement toner image based on the change amount of the frequency and a result of detecting density of the measurement toner image in the density detecting unit, and acquires the charging amount of the toner based on the acquired tilt of the measurement straight line and the reference information in the storage unit.
Abstract:
An image forming apparatus has a photosensitive member, a charging member, an exposing device, a developing device, a transfer member, a polishing member, a driving device, a voltage applying device, a torque detector, and a control portion. The photosensitive member has a photosensitive layer and a surface protection layer formed on the surface of the photosensitive layer. The polishing member has an elastic layer on its circumferential surface, and rotates with a linear velocity difference from that of the photosensitive member. The torque detector detects the torque of the driving device. The control portion estimates an attachment condition of discharge products to the surface of the photosensitive member based on the torque of the driving device detected by the torque detector. When the torque is equal to or higher than a predetermined value, the control portion performs an image degradation suppression process.
Abstract:
In a development device, a developer carrier arranged in a housing containing a one-component developer has a circumferential surface carrying the developer. A developer conveying path includes one conveying path along the developer carrier in a first direction and another conveying path in a second direction opposite to the first direction. The developer is circulated and conveyed between the conveying paths. A developer conveying member is arranged in the one conveying path and rotationally driven to convey the developer along the first direction and to supply the developer to the developer carrier. A layer thickness adjusting member is arranged at a distance from the circumferential surface to adjust a layer thickness of the developer supplied to the developer carrier. The developer carrier has a circumferential speed Vd and the developer conveying member has a circumferential speed Vs so that a circumferential speed ratio Vd/Vs satisfies a relationship represented by 1.3≦Vd/Vs≦5.0.