Abstract:
An image forming apparatus has a photosensitive member, a charging member, an exposing device, a developing device, a transfer member, a polishing member, a driving device, a voltage applying device, a torque detector, and a control portion. The photosensitive member has a photosensitive layer and a surface protection layer formed on the surface of the photosensitive layer. The polishing member has an elastic layer on its circumferential surface, and rotates with a linear velocity difference from that of the photosensitive member. The torque detector detects the torque of the driving device. The control portion estimates an attachment condition of discharge products to the surface of the photosensitive member based on the torque of the driving device detected by the torque detector. When the torque is equal to or higher than a predetermined value, the control portion performs an image degradation suppression process.
Abstract:
In a development device, a developer carrier arranged in a housing containing a one-component developer has a circumferential surface carrying the developer. A developer conveying path includes one conveying path along the developer carrier in a first direction and another conveying path in a second direction opposite to the first direction. The developer is circulated and conveyed between the conveying paths. A developer conveying member is arranged in the one conveying path and rotationally driven to convey the developer along the first direction and to supply the developer to the developer carrier. A layer thickness adjusting member is arranged at a distance from the circumferential surface to adjust a layer thickness of the developer supplied to the developer carrier. The developer carrier has a circumferential speed Vd and the developer conveying member has a circumferential speed Vs so that a circumferential speed ratio Vd/Vs satisfies a relationship represented by 1.3≦Vd/Vs≦5.0.
Abstract:
An image forming apparatus includes a developer information acquisition unit. The developer information acquisition unit performs a developer deterioration information acquisition operation. In the developer deterioration information acquisition operation, the developer information acquisition unit acquires a tilt of a measurement straight line representing the relationship between the change amount of the frequency in a first measurement toner image forming operation and the density change amount of the measurement toner image based on the change amount of the frequency in the first measurement toner image forming operation and a result of detecting density of the measurement toner image in a density detecting unit, and acquires a toner charging amount based on the acquired tilt of the measurement straight line and the reference information in the storage unit so as to acquire information relating to deterioration of developer based on the acquired toner charging amount.
Abstract:
A developing device includes a developing roller and a layer thickness regulating member. The developing roller includes a fixed magnet and a sleeve. The layer thickness regulating member includes a regulating body portion and an upstream regulating portion, and the upstream regulating portion includes an upstream magnetic member and a nonmagnetic member. Developer is hardly strongly jammed in an area between a first magnetic field concentration point of the regulating body portion and a second magnetic field concentration point of the upstream regulating portion. Thus, even if the sleeve of the developing roller is rotated at a higher speed than before, the developer is stably regulated by the layer thickness regulating member.
Abstract:
A developing device includes a developing roller, a conveyor roller and a developer stirring unit. The developing roller is arranged to face a photoconductive drum at a predetermined developing position. The developing roller includes a fixed first magnet and a first sleeve. The conveyor roller is arranged to face the developing roller at a predetermined facing position. The conveyor roller includes a fixed second magnet and a second sleeve. The developer stirring unit stirs the developer and supplies the developer to the conveyor roller. The first magnet includes a first magnetic pole composed of a predetermined magnetic pole and a second magnetic pole arranged downstream of and adjacent to the first magnetic pole and having the same polarity as the first magnetic pole. The developer is transferred from the developing roller to the conveyor roller after passing through a repulsive magnetic field formed by the first and second magnetic poles.
Abstract:
An image forming apparatus of the present invention includes a developing device. In a case body of the developing device, a first storage chamber and a second storage chamber are formed. A first agitating screw is provided in the first storage chamber and a second agitating screw is provided in the second storage chamber. A developing roller is provided in the second storage chamber. A control portion controls driving of a first motor and a second motor. When toner installation is performed, the control portion controls driving of the first motor at a rotational speed higher than a rotational speed for development operation in a state where the second motor is stopped. When a certain condition is satisfied, the control portion starts control of driving of the second motor, to drive rotation of the second motor.
Abstract:
A developing device includes a housing, a developer carrier, a conveying member and a surface layer. The conveying member conveys the developer in the first conveying direction and supplies the developer to the developer carrier. The surface layer is arranged on the circumferential surface of the developer carrier and formed on a surface of a predetermined cylindrical base member. The surface layer is formed by an immersion method of immersing the base member in an immersion tank so that an axial direction of the base member extends along a vertical direction. A lower end side of the base member at the time of the immersion is arranged in a downstream side of the housing in the first conveying direction and an upper end side of the base member at the time of the immersion is arranged in an upstream side of the housing in the first conveying direction.
Abstract:
A developing device of this disclosure has: a housing, a developing roller, a developer conveying path, a partition board, a second communication path, a developer receiving port, a first conveying member, a second conveying member, and a conveyance capability inhibition part. A toner is cyclically conveyed in a first conveying path and a second conveying path. A first stirring screw is disposed in the first conveying path and driven into ration around a first rotation axis for toner conveyance. Formed downstream of the first stirring screw by the conveyance capability inhibition part is a toner accumulation part, and the amount of toner refilled from a toner refill port is adjusted. Where an aperture area of the first communication path is A1 and a circular area formed by an outer circumferential edge of the first stirring screw in section orthogonal to the first rotation axis is A2, relationship 0.5×A2
Abstract:
An image forming apparatus includes a storage unit and a charging amount acquisition unit. The charging amount acquisition unit performs a charging amount acquisition operation for forming a measurement toner image on the image carrier while changing the frequency of the alternating current voltage of the development bias with a potential difference in a direct current voltage between the developing roller and the image carrier being kept constant, acquiring a tilt of a measurement straight line representing a relationship between the change amount of the frequency and a density change amount of the measurement toner image, and acquiring the charging amount of the toner based on the acquired tilt of the measurement straight line and the reference information in the storage unit.
Abstract:
An image forming apparatus of the present invention includes a developing device. In a case body of the developing device, a first storage chamber and a second storage chamber are formed. A first agitating screw is provided in the first storage chamber and a second agitating screw is provided in the second storage chamber. A developing roller is provided in the second storage chamber. A control portion controls driving of a first motor and a second motor. When toner installation is performed, the control portion controls driving of the first motor at a rotational speed higher than a rotational speed for development operation in a state where the second motor is stopped. When a certain condition is satisfied, the control portion starts control of driving of the second motor, to drive rotation of the second motor.