Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. A resin coat layer has been formed on an outer circumferential surface of the roller main body, the resin coat layer being made of a resin material having electric conductivity. A product of resistance component Rs [Ω] and electrostatic capacitance component Cs [F] in AC impedance Z of the roller main body is in a range from 2.79×10−7 to 6.77×10−5, the AC impedance Z being obtained when an AC voltage of a predetermined frequency f is applied.
Abstract:
Developing device includes developing roller and magnetic roller. Developing roller includes aluminum oxide thin film and resin coat layer. Magnetic roller is disposed to face, without contact, outer circumferential surface of developing roller, and includes aluminum oxide thin film formed on outer circumferential surface of base body that is made of metal including aluminum. Magnetic roller forms toner layer on surface of developing roller via magnetic brush composed of toner and magnetic carrier. AC impedance Z1 is in range from 1.0×105Ω to 1.0×106Ω and surface roughness Ra of resin coat layer is in range from 0.057 μm to 0.280 μm, AC impedance Z1 being obtained when AC voltage at predetermined frequency is applied to between base body of magnetic roller and base body of developing roller in a state where the magnetic brush is formed on magnetic roller.
Abstract:
The present disclosure relates to a developing roller having a conductive support base, a surface of which is covered with a resin layer, wherein the resin layer contains conductive fine particles and soluble nylon serving as a binder resin, and the resin layer surface has a surface roughness Ra of at least 0.4 μm, a waviness curve cycle of 50 to 400 μm, and a waviness curve height of 2 to 10 μm.
Abstract:
An inkjet recording apparatus includes a recording head including a plurality of nozzles for ejecting ink, a conveyor belt that has a plurality of apertures and conveys recording media one by one, a control unit, an ink receiver, and a pipe-shaped ink discharge flow path. The control unit controls drive of the recording head and the conveyor belt to perform flushing, in which the ink is ejected from the nozzle of the recording head to pass through one of the apertures, at a timing different from a timing contributing to image recording. The ink receiver is disposed to face the recording head sandwiching the conveyor belt therebetween, to receive the ink after passing through the aperture when the flushing is performed. The ink discharge flow path is connected to the ink receiver. When the flushing is performed, a predetermined amount of liquid is stored in the ink receiver.
Abstract:
A developing device supplies a developer to a photosensitive drum, which has a cylindrical shape, and is rotatable around an axis thereof for forming an electrostatic latent image on the circumferential surface thereof. The developing device is provided with a developing roller. The developing roller is disposed to face the photosensitive drum, and has a cylindrical shape. The developing roller is rotatable around an axis thereof for carrying a developer on the circumferential surface thereof. The developing roller is provided with a small diameter portion. The small diameter portion is a part of the circumferential surface of the developing roller. The small diameter portion extends from an axial end of the developing roller axially inward by a predetermined length, and has an outer diameter smaller than an axially middle portion of the developing roller.
Abstract:
The inkjet recording apparatus includes a conveyance belt, a conveyance plate, a suction unit, an inkjet head, and a cleaning unit. The conveyance belt has a plurality of through holes. The suction unit causes the conveyance belt to suck the sheet. The conveyance plate includes a plurality of through holes formed in bottom portions of the plurality of recessed portions. The inkjet head includes a head main body and a head end portion adjacent to the head main body, and faces an upper surface of the conveyance plate via the conveyance belt. The cleaning unit removes ink adhering to a lower surface of the head main body. A ratio of the recessed portions per unit area in a facing region of the conveyance plate facing the head end portion is smaller than a ratio of the recessed portions per unit area in a region other than the facing region.
Abstract:
A developing device includes a housing, a development roller, and a roller gear. The roller gear is disposed at one axial end of the development roller and transmits a rotational drive force to the development roller. The development roller includes a sleeve and a coating layer. The coating layer is formed by dipping the sleeve in a dipping bath with the sleeve directed axially vertically. The development roller is mounted to the housing such that a lower axial end of the development roller at the time of the dipping is an opposite axial end to the one axial end at which the roller gear is disposed.
Abstract:
The present disclosure relates to a developing roller having a conductive support base, a surface of which is covered with a resin layer, wherein the resin layer contains conductive fine particles and soluble nylon serving as a binder resin, and the resin layer surface has a surface roughness Ra of at least 0.4 μm, a waviness curve cycle of 50 to 400 μm, and a waviness curve height of 2 to 10 μm.
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. A resin coat layer has been formed on an outer circumferential surface of the roller main body, the resin coat layer being made of a resin material having electric conductivity. A product of resistance component Rs [Ω] and electrostatic capacitance component Cs [F] in AC impedance Z of the roller main body is in a range from 2.79×10−7 to 6.77×10−5, the AC impedance Z being obtained when an AC voltage of a predetermined frequency f is applied.
Abstract:
In the case of a standard sized sheet, a first controller sets a linear velocity D of an image bearing member at a first velocity and sets a linear velocity S of a toner bearing member so that S/D, which is a ratio of the linear velocity S to the linear velocity D, has a first value and a second controller sets the thickness of the toner layer carried on the toner bearing member at a first layer thickness. In the case of a long sheet, the first controller sets the linear velocity D at a second velocity slower than the first velocity and sets the linear velocity S so that the S/D has a second value larger than the first value and the second controller sets the thickness of the toner layer at a second layer thickness smaller than the first layer thickness.