Abstract:
A modular drill including a shank having a shank bore therein, a guide pin tip disposed in the shank bore, a cutting tip, and a connection shaft coupled to the cutting tip, the connection shaft having a connection shaft sidewall and a guide path therein for guiding the guide pin tip therethrough while the connection shaft moves through the shank bore.
Abstract:
A rotary cutting tool, in particular a drill, is described, which comprises a shank and an exchangeable cutting tip (14). For this purpose, a locking geometry having an undercut of a first type and a torque transmission geometry is provided on the shank. A locking projection having a torque transmission counter-geometry is provided on the cutting tip, wherein, in a mounted state, the locking projection engages in the undercut of the first type and the torque transmission counter-geometry abuts the torque transmission geometry. The rotary cutting tool further comprises a securing unit, which holds the cutting tip on the shank.
Abstract:
The rotary tool has two coupling parts, namely a carrier and a cutting head having a front end face. The carrier has a pin seat into which a coupling pin of the cutting head is inserted. Effective stop faces are formed on the pin seat and on the coupling pin in the axial direction for axial pull-out protection. For a design that is as simple as possible, in particular in terms of grinding, a side face adjoins a respective stop face of the coupling pin and, when viewed in the axial direction, freely extends to the end face. In particular, the side face forms a torque face. For reliable clamping attachment, in particular with larger nominal diameters (D), a separating slot is made in the carrier and a clamping screw is inserted into it, both of which serve to fix the cutting head in the pin seat.
Abstract:
A rotary cutting tool, in particular a drill, is described, which comprises a shank and an exchangeable cutting tip (14). For this purpose, a locking geometry having an undercut of a first type and a torque transmission geometry is provided on the shank. A locking projection having a torque transmission counter-geometry is provided on the cutting tip, wherein, in a mounted state, the locking projection engages in the undercut of the first type and the torque transmission counter-geometry abuts the torque transmission geometry. The rotary cutting tool further comprises a securing unit, which holds the cutting tip on the shank.
Abstract:
A modular drill including a shank having a shank bore therein, a guide pin tip disposed in the shank bore, a cutting tip, and a connection shaft coupled to the cutting tip, the connection shaft having a connection shaft sidewall and a guide path therein for guiding the guide pin tip therethrough while the connection shaft moves through the shank bore.
Abstract:
A rotary tool comprising two coupling parts, namely a carrier and a cutting head in a front end surface. The carrier comprises a pin receptacle into which a coupling pin of the cutting head is inserted. In order to prevent pulling-out in an axial direction, stop surfaces are provided on the pin receptacle and on the coupling pin, said stop surfaces being effective in an axial direction. For a design that is as simple as possible, in particular with regard to grinding, each stop surface of the coupling pin is adjoined by a lateral surface which freely tapers off in the direction toward the end surface as viewed in the axial direction. In particular, the lateral surface constitutes a torque surface.
Abstract:
The rotary tool (2) is in particular designed as a modular drill and extends in an axial direction (4) along an axis of rotation (6). It comprises two coupling parts, namely a carrier (10) and a cutting head (12) that is attached to the carrier (10) so as to be exchangeable. A pin receiving means (20) is provided on the carrier (10), into which pin receiving means a coupling pin (40) of the cutting head (12) is introduced in a clamping manner and so as to be reversibly exchangeable. The pin receiving means (20) and the coupling pin (40) have torque sections (30a,b) and clamping sections (32a,b) that correspond to one another. In order to permit simple production, these clamping and torque sections are oriented parallel to the axis of rotation (6). In addition, in order to prevent pulling-out in an axial direction, stop surfaces (38a,b) are provided on the pin receiving means (20) and on the coupling pin (40), said stop surfaces being effective in an axial direction (4) and corresponding to one another. These stop surfaces preferably extend horizontally and therefore perpendicular to the axis of rotation (6).
Abstract:
A rotary tool comprising two coupling parts, namely a carrier and a cutting head in a front end surface. The carrier comprises a pin receptacle into which a coupling pin of the cutting head is inserted. In order to prevent pulling-out in an axial direction, stop surfaces are provided on the pin receptacle and on the coupling pin, said stop surfaces being effective in an axial direction. For a design that is as simple as possible, in particular with regard to grinding, each stop surface of the coupling pin is adjoined by a lateral surface which freely tapers off in the direction toward the end surface as viewed in the axial direction. In particular, the lateral surface constitutes a torque surface.
Abstract:
A tool coupling used for a clamping connection between two coupling parts, in particular between a cutting head and a carrier of a rotary tool, in particular of a drill. The coupling parts comprise clamping sections, which respectively correspond to one another and which can be clamped against each other by turning counter to a predefined direction of rotation about an axis of rotation so that a press fit is produced. In order to produce a high clamping force and at the same time allow for a simple installation via screwing in, each clamping section comprises several successive clamping surfaces which—with respect to a cross section viewed orthogonally to the axial direction—respectively travel along a circular arc, wherein the diameter increases for clamping surfaces succeeding one another in the direction of rotation.
Abstract:
A coupling part structured to engage with a complementary coupling part for interchangeably fastening a cutting head to a carrier of a rotary cutting tool. The coupling part includes a pair of coupling pins arranged opposite each other with respect to a central longitudinal axis and spaced apart from each other so as to form a receiving space structured to receive a central pin of the complementary coupling part. Each coupling pin includes a stop surface for transmitting a torque, a radially external outer surface, and a radially internal inner surface. At least one of the outer surface or inner surface is a clamping surface oriented in an obliquely inclined manner with respect to the central longitudinal axis for centering and clamping the coupling part.