Abstract:
Methods and reaction systems are disclosed that are adapted for forming crystallites having novel crystal habits and/or morphologies compared to conventional crystallites of the same chemical composition. The methods and reaction systems involve chemical reactions between at least two reactant compounds occurring in a liquid (or gel) that form insoluble crystallite products. At least one of the reactants is rendered soluble in a solvent in which the reactant is not normally soluble by adding an agent that forms soluble molecular complexes of the agent and the reactant. The complexing agent not only facilitates dissolution of the reactant in the solvent but also plays a role in how the faces of crystals comprising the crystallite product are enlarged during formation of the product. Products having such altered crystallite structure have a number of possible uses.
Abstract:
Methods are disclosed in which first and second reactant salts and, optionally, a complexing agent are added to a non-aqueous reaction solvent to form a reaction system. The reactant salts, which are substantially soluble and reactive with each other in water to form a first crystallite of calcium carbonate, are present in the reaction solvent in relative amounts that are sufficient to form a desired amount of the calcium carbonate in the reaction system. The complexing agent, if present, is a crown ether or other cyclic or acyclic polydentate chelating agent that, in the reaction solvent, forms chelation complexes with at least one of the reactant salts. Reaction of the first and second reactant salts in the reaction solvent forms a second crystallite precipitate comprising crystals of calcium carbonate having a different habit or morphology from calcium carbonate crystals in the first crystallite that would otherwise be formable in water by reaction of similar amounts of the first and second reactant salts.
Abstract:
Methods are disclosed in which first and second reactant salts and a complexing agent are added to a non-aqueous reaction solvent in which the complexing agent is soluble. The complexing agent is a crown ether or other cyclic or acyclic polydentate chelating agent that, in the reaction solvent, forms chelation complexes with at least one of the reactant salts. The reactant salts, which are substantially soluble and reactive with each other in water to form a first crystallite of silver halide, are present in the reaction solvent in relative amounts that are sufficient to form a desired amount of the silver halide in the reaction solvent. Reaction of the first and second reactant salts in the reaction solvent forms a second crystallite precipitate comprising crystals of silver halide having a different habit or morphology from silver halide crystals in the first crystallite that would otherwise be formable in water by reaction of similar amounts of the first and second reactant salts.