Abstract:
The disclosed embodiments include a method, apparatus, and computer program product for approximating multiphase flow reservoir production simulation for ranking multiple petro-physical realizations. One embodiment is a system that includes at least one processor and memory coupled to the at least one processor, the memory storing instructions that when executed by the at least one processor performs operations that includes generating a set of pseudo-phase production relative permeability curves; receiving production rate history data; receiving minimal simulation configuration parameters; performing flow simulation using the set of pseudo-phase production relative permeability curves for a set of petro-physical realizations; determining an optimal matching pseudo-phase production simulation result that best matches the production rate history data; and determining a ranking for the petro-physical realizations within the set of petro-physical realizations based on an area between a composite rate curve for a petro-physical realization and a historical rate curve.
Abstract:
The disclosed embodiments include a method, apparatus, and computer program product for approximating multiphase flow reservoir production simulation. For example, one disclosed embodiment includes a system that includes at least one processor and memory coupled to the at least one processor, the memory storing instructions that when executed by the at least one processor performs operations that includes generating a set of pseudo-phase production relative permeability curves; receiving production rate history data; receiving simulation configuration parameters; performing flow simulation using the set of pseudo-phase production relative permeability curves; determining an optimal matching pseudo-phase production simulation result that best matches the production rate history data; and performing relative permeability inversion using signal processing analysis of production rate history data to approximate relative permeability curve descriptions with quantified uncertainty.
Abstract:
A method may comprise: modeling a complex fracture network within the subterranean formation with a mathematical model based on a natural fracture network map and measured data of the subterranean formation collected in association with a fracturing treatment of the subterranean formation to produce a complex fracture network map; importing microseismic data collected in association with the fracturing treatment of the subterranean formation into the mathematical model; identifying directions of continuity in the microseismic data via a geostatistical analysis that is part of the mathematical model; and correlating the directions of continuity in the microseismic data to the complex fracture network with the mathematical model to produce a microseismic-weighted (MSW) complex fracture network map.
Abstract:
A method may comprise: modeling a complex fracture network within the subterranean formation with a mathematical model based on a natural fracture network map and measured data of the subterranean formation collected in association with a fracturing treatment of the subterranean formation to produce a complex fracture network map; importing microseismic data collected in association with the fracturing treatment of the subterranean formation into the mathematical model; identifying directions of continuity in the microseismic data via a geostatistical analysis that is part of the mathematical model; and correlating the directions of continuity in the microseismic data to the complex fracture network with the mathematical model to produce a microseismic-weighted (MSW) complex fracture network map.
Abstract:
The disclosed embodiments include a method, apparatus, and computer program product for approximating multiphase flow reservoir production simulation. For example, one disclosed embodiment includes a system that includes at least one processor and memory coupled to the at least one processor, the memory storing instructions that when executed by the at least one processor performs operations that includes generating a set of pseudo-phase production relative permeability curves; receiving production rate history data; receiving simulation configuration parameters; performing flow simulation using the set of pseudo-phase production relative permeability curves; determining an optimal matching pseudo-phase production simulation result that best matches the production rate history data; and performing relative permeability inversion using signal processing analysis of production rate history data to approximate relative permeability curve descriptions with quantified uncertainty.