Abstract:
A display device includes a gate insulating layer disposed on a channel region of a semiconductor layer. A gate electrode is disposed on the gate insulating layer over the channel region of the semiconductor layer. A source electrode is disposed in direct contact with the source region of the semiconductor layer and a drain electrode is disposed in direct contact with a drain region of the semiconductor layer. A passivation layer is disposed on the gate electrode, the source electrode, and the drain electrode. The passivation layer is in direct contact with semiconductor layer in a region between the source electrode and the gate electrode, and is in direct contact with the semiconductor layer in a region between the gate electrode and the drain electrode. The first gate electrode, the first source electrode, and the first drain electrode comprise a same layer and a same material.
Abstract:
Discussed is an organic light emitting display device. The organic light emitting display device can include a first emission part, a second emission part on the first emission part, and a first P-type charge generation layer between the first emission part and the second emission part. The first emission part includes a first hole transport layer, a first emission layer, and a first electron transport layer. The second emission part includes a second hole transport layer, a second emission layer, and a second electron transport layer. The second hole transport layer and the first P-type charge generation layer are disposed adjacent to each other. The second hole transport layer includes a first material and a second material. The first material has an absolute value of a HOMO energy level which can be greater than an absolute value of a LUMO energy level of the first P-type charge generation layer.
Abstract:
Disclosed herein is an electroluminescent display device capable of improving reliability of a contact portion between low-potential supply line and a cathode electrode of an organic light emitting diode. The electroluminescent display device includes a low potential voltage supply line disposed on a display panel to supply a low potential voltage to the display panel; a cathode electrode overlapped with the low potential voltage supply line and having at least one contact portion; and an auxiliary cathode electrode overlapped with the low potential voltage supply line and the cathode electrode to connect the low potential voltage supply line to the cathode electrode, wherein a bank layer is disposed between the cathode electrode and the auxiliary cathode electrode to cover a rim of the auxiliary cathode electrode, or the cathode electrode covers a rim of the auxiliary cathode electrode and an inorganic insulation layer.
Abstract:
Disclosed is an organic light emitting display device. The organic light emitting display device includes a first emission part between a first electrode and a second electrode and a second emission part on the first emission part. The first emission part includes a first hole transport layer and a first emission layer, and the second emission part includes a second hole transport layer and a second emission layer. A thickness of the second hole transport layer is greater than a thickness of the first hole transport layer.
Abstract:
Discussed is an organic light emitting display device. The organic light emitting display device according to an embodiment includes a first electrode and a second electrode on a substrate to be opposite to each other and at least three emission parts between the first electrode and the second electrode. A first distance between the substrate and the first emission layer, a second distance between the first emission layer and the second emission layer, a third distance between the second emission layer and the third emission layer, and a fourth distance between the third emission layer and the second electrode are different from each other.
Abstract:
An organic light emitting diode (OLED) display and a method for manufacturing the same are provided. The OLED display includes a substrate, an active layer and a capacitor lower electrode positioned on the substrate, a gate insulating layer positioned on the active layer and the capacitor lower electrode, a gate electrode positioned on the gate insulating layer at a location corresponding to the active layer, a capacitor upper electrode positioned on the gate insulating layer at a location corresponding to the capacitor lower electrode, a first electrode positioned to be separated from the gate electrode and the capacitor upper electrode, an interlayer insulating layer positioned on the gate electrode, the capacitor upper electrode, and the first electrode, a source electrode and a drain electrode positioned on the interlayer insulating layer, and a bank layer positioned on the source and drain electrodes.
Abstract:
An organic light emitting diode (OLED) display and a method for manufacturing the same are provided. The OLED display includes a substrate, an active layer and a capacitor lower electrode positioned on the substrate, a gate insulating layer positioned on the active layer and the capacitor lower electrode, a gate electrode positioned on the gate insulating layer at a location corresponding to the active layer, a capacitor upper electrode positioned on the gate insulating layer at a location corresponding to the capacitor lower electrode, a first electrode positioned to be separated from the gate electrode and the capacitor upper electrode, an interlayer insulating layer positioned on the gate electrode, the capacitor upper electrode, and the first electrode, a source electrode and a drain electrode positioned on the interlayer insulating layer, and a bank layer positioned on the source and drain electrodes.
Abstract:
Discussed is an organic light emitting display device for reducing a color defect or a color difference which occurs in the front or side of the organic light emitting display device. The organic light emitting display device can include a first electrode, a second electrode and an organic layer between the first electrode and the second electrode, the organic layer including at least one emission part. The organic layer is configured for a peak wavelength of an electroluminescence (EL) spectrum of the organic light emitting display device emitted from the at least one emission part to have a range from 10 nm less a predetermined peak wavelength to 10 nm more than the predetermined peak wavelength.
Abstract:
A display device for increasing a repair success rate by easily cutting signal lines in a repair process of subpixels and preventing a short circuit of the signal lines is disclosed. The display device includes subpixels positioned on a first substrate, each subpixel including an emission area, in which a light emitting element is disposed, and a circuit area in which a circuit for driving the light emitting element is disposed, and a first power connection line, a sensing connection line, and at least one gate line positioned in the circuit area and connected to the subpixels. A number of stacked layers of a portion of at least one of the first power connection line and the sensing connection line is less than a number of stacked layers of the gate line.
Abstract:
An organic light emitting display device can include a first electrode on a substrate; a first emission part on the first electrode, the first emission part including a first emission layer; a second emission part on the first emission part, the second emission part including a second emission layer; a third emission part on the second emission part, the third emission part including a third emission layer; and a second electrode on the third emission part, in which a first thickness between the substrate and the first emission layer, a second thickness between the first emission layer and the second emission layer, a third thickness between the second emission layer and the third emission layer, and a fourth thickness between the third emission layer and the second electrode are different from each other, and the first, second emission, and third emission parts include at least one organic layer.