Abstract:
A display device and a method for manufacturing a display device are disclosed. The display device may prevent a leakage current from occurring between adjacent pixels. The display device comprises a substrate, a first electrode provided in each of a first subpixel and a second subpixel arranged to be adjacent to the first subpixel, on the substrate, a trench provided between the first subpixel and the second subpixel, a light emitting layer provided in each of the first subpixel and the second subpixel on the first electrode, a second electrode provided in each of the first subpixel and the second subpixel on the light emitting layer, and a third electrode electrically connecting the second electrode provided in the first subpixel with the second electrode provided in the second subpixel. The second electrode is disconnected between the first subpixel and the second subpixel by the trench.
Abstract:
An electroluminescent display apparatus includes a substrate including a display area and a non-display area outside the display area, a first electrode provided in each of a plurality of subpixels in the display area of the substrate, a connection electrode provided in the non-display area of the substrate, a bank covering both ends of the first electrode and covering a top surface of the connection electrode, a light emitting layer provided on the first electrode and the bank in the display area and the non-display area, and a second electrode provided on the light emitting layer, wherein, a trench is provided in the bank in the non-display area, one side surface of the connection electrode is exposed at an inner portion of the trench, and the second electrode extends to the inner portion of the trench and contacts the one side surface of the connection electrode.
Abstract:
Disclosed is an organic light emitting display device which is capable of maximizing a luminance improvement by an appropriate arrangement of a white pixel in a pixel, wherein the organic light emitting display device comprises a plurality of pixels, wherein each pixel includes a first subpixel for emitting first-color light, a second subpixel for emitting second-color light, a third subpixel for emitting third-color light, and a fourth subpixel for emitting fourth-color light, wherein the fourth subpixel for each pixel is disposed between the first and second subpixels, and between the first and third subpixels.
Abstract:
Disclosed is an organic light emitting display device for reducing or preventing anodes from being partially detached or torn in high resolution models. The organic light emitting display device includes a substrate including first and second subpixels disposed adjacent to each other in a first axis direction, a first anode electrode provided in the first subpixel and connected to a first TFT of the first subpixel through a first contact hole, and a second anode electrode provided in the second subpixel and connected to a second TFT of the second subpixel through a second contact hole. The first and second contact holes are disposed in a diagonal direction, the first anode electrode protrudes from the first contact hole in a direction toward the second subpixel, and the second anode electrode protrudes from the second contact hole in a direction toward the first subpixel. Accordingly, partial detachment of anode electrodes is reduced, or in some cases, prevented.
Abstract:
Disclosed is an organic light emitting display device for reducing or preventing anodes from being partially detached or torn in high resolution models. The organic light emitting display device includes a substrate including first and second subpixels disposed adjacent to each other in a first axis direction, a first anode electrode provided in the first subpixel and connected to a first TFT of the first subpixel through a first contact hole, and a second anode electrode provided in the second subpixel and connected to a second TFT of the second subpixel through a second contact hole. The first and second contact holes are disposed in a diagonal direction, the first anode electrode protrudes from the first contact hole in a direction toward the second subpixel, and the second anode electrode protrudes from the second contact hole in a direction toward the first subpixel. Accordingly, partial detachment of anode electrodes is reduced, or in some cases, prevented.
Abstract:
An organic light emitting diode display device includes a first substrate; a conductive line formed on a first surface of the first substrate; an organic light emitting diode and an encapsulation layer on the conductive line; a second substrate on the encapsulation layer; a conductive pad connected to the conductive line and arranged in a through hole passing through the first substrate; and a driving circuit unit on a second surface opposite the first surface of the first substrate and connected to the conductive pad.
Abstract:
An electroluminescent display apparatus includes: a substrate including: first to third subpixels, a circuit device layer including a driving thin-film transistor respectively in each of the first to third subpixels on the substrate, a first electrode respectively in each of the first to third subpixels, a light-emitting layer on the first electrodes, and a second electrode on the light-emitting layer, wherein the first electrode of the first subpixel includes: a first lower electrode, and a first upper electrode, wherein the first electrode of the second subpixel includes: a second lower electrode, and a second upper electrode, wherein a distance between the first lower electrode and the first upper electrode differs from a distance between the second lower electrode and the second upper electrode, and wherein the first lower electrode and the first upper electrode are electrically connected to each other through a first contact electrode therebetween.
Abstract:
A display device with an integrated touch screen, the display device including a first substrate, a first electrode on the first substrate, an organic light emitting layer on the first electrode, a second electrode on the organic light emitting layer and an encapsulation film on the second electrode, wherein the encapsulation film includes: a first touch sensing layer with a first touch electrode and a first insulating film disposed at a first layer, an insulating film disposed on the first touch sensing layer and a second touch sensing layer with a second touch electrode and a second insulating film disposed at a second layer, wherein the second touch sensing layer is disposed on the insulating film, wherein the first insulating film is disposed between the first touch electrode and another neighboring first touch electrode, and is not disposed on the first touch electrode.
Abstract:
Discussed is a display device and a fabricating method thereof according to an embodiment, in which an organic-inorganic composite film is patterned without a mask by using an anti-film layer, and a residual anti-film layer protects a pad portion. The display device comprises a lower substrate; pixels arranged on a display area of the lower substrate; pads arranged on a non-display area of the lower substrate; an encapsulation layer arranged on the pixels; and an anti-film layer arranged on the pads as a molecular layer having a thickness of a single molecule. Also, the fabricating method of the display device comprises the steps of forming pads on a non-display area of a lower substrate and forming pixels on a display area; and forming an anti-film layer on the pixels as a molecular layer having a thickness of a single molecule.
Abstract:
Disclosed is an electroluminescent display device including a first pixel including a first sub pixel configured to emit first colored light, a second sub pixel configured to emit second colored light, and a third sub pixel configured to emit third colored light, a first electrode in the first sub pixel, an emission layer on the first electrode, a second electrode on the emission layer, and a first charge blocking layer provided below the second electrode and configured to prevent a light emission in the emission layer, wherein the first electrode is electrically connected with a driving thin film transistor in a first contact area provided in the first sub pixel, and the first charge blocking layer is overlapped with the first contact area.