Abstract:
A stereoscopic image display and a method for manufacturing the same are disclosed. The stereoscopic image display including a first substrate and a second substrate adhered to each other with a liquid crystal layer interposed, black matrices formed between the liquid crystal layer and the first substrate, and black stripes formed between the liquid crystal layer and the second substrate to correspond to the black matrices.
Abstract:
A multi-view display device is provided. The multi-view display device includes a display panel having a plurality of pixels disposed in a matrix arrangement, adjacent first and second pixels of the plurality of pixels constituting a group pixel; a barrier disposed on the display panel and having an opening that transmits light and a shielding portion that shields light; and a driver configured to selectively drive the display panel in a normal driving mode, a narrow viewing angle mode, and a multi-view mode by controlling signals applied to the first and second pixels. The opening is overlapped with the first pixel, and the shielding portion is overlapped with the second pixel.
Abstract:
A multi-view display device is provided. The multi-view display device includes a display panel having a plurality of pixels disposed in a matrix arrangement, adjacent first and second pixels of the plurality of pixels constituting a group pixel; a barrier disposed on the display panel and having an opening that transmits light and a shielding portion that shields light; and a driver configured to selectively drive the display panel in a normal driving mode, a narrow viewing angle mode, and a multi-view mode by controlling signals applied to the first and second pixels. The opening is overlapped with the first pixel, and the shielding portion is overlapped with the second pixel.
Abstract:
An array substrate includes: a substrate; first and second gate lines on the substrate; first and second common lines parallel to and spaced apart from the first and second gate lines; first and second data lines crossing the first and second gate lines and the first and second common lines; first and second thin film transistors in the pixel region; a first pixel electrode and a first common electrode alternately disposed in the first area, at least one of the first pixel electrode and the first common electrode having a bent part; and a second pixel electrode and a second common electrode alternately disposed in the second area.
Abstract:
A stereoscopic image display includes a display panel, which selectively displays a 2D image and a 3D image and includes a plurality of pixels, and a patterned retarder for dividing light from the display panel into first polarized light and second polarized light. Each of the pixels includes a main display unit including a first pixel electrode and a first common electrode, a subsidiary display unit including a second pixel electrode and a second common electrode, and a line unit disposed between the main display unit and the subsidiary display unit. The line unit includes a gate line, a discharge control line through which a discharge control voltage is applied to a discharge control TFT, and a lower common line through which a common voltage is applied to an upper common line.
Abstract:
A display apparatus presented herein includes a substrate having a pixel, a light-emitting diode in the pixel, a first insulating layer around the light-emitting diode, a second insulating layer on the first insulating layer, and a first bank around the second insulating layer.
Abstract:
A stereoscopic image display and a method for manufacturing the same are disclosed. The stereoscopic image display including a first substrate and a second substrate adhered to each other with a liquid crystal layer interposed, black matrices formed between the liquid crystal layer and the first substrate, and black stripes formed between the liquid crystal layer and the second substrate to correspond to the black matrices.
Abstract:
A display device includes a light emitting diode LED element having a horizontal length in an X-axis direction and a vertical length in a Y-axis direction, a driving element connected to the LED element, and a reflective functional layer positioned to overlap an upper portion or a lower portion of the LED element, wherein the reflective functional layer includes a central area overlapping the LED element, an outer area including a graduation smaller than the horizontal length or the vertical length of the LED element, and a peripheral area between the central area and the outer area. Accordingly, it is possible to reduce a contact defect of the light emitting diode and the driving element by checking a position where the light emitting diode is attached on a substrate and a degree of misalignment.