Abstract:
The present disclosure relates to a large area organic light emitting diode display and a method for manufacturing the same. A photoresist is deposited across first and second pixel areas of the display. The photoresist is patterned to generate a patterned photoresist by stripping away first portions of the photoresist in the first pixel areas while keeping second portions of the photoresist in the second pixel areas. An organic emission layer is deposited across the first and second pixel areas over the patterned photoresist. An electron transport layer is deposited across the first pixel areas and the second pixel areas over the organic emission layer. Portions of the organic emission layer and the electron transport layer in the second pixel areas are removed by stripping away the second portions of the photoresist while keeping portions of the organic emission layer and the electron transport layer in the first pixel areas.
Abstract:
An organic light emitting display device according to an embodiment includes a lower substrate; a bank layer disposed on the lower substrate; a connection assistance unit disposed on the bank layer; a cathode disposed on the lower substrate so as to cover the bank layer; an auxiliary electrode disposed on the bank layer and electrically connected with the cathode; and an upper substrate provided to face the lower substrate.
Abstract:
A highly fluorinated photoresist employing a photodimerization chemistry and a method for manufacturing an organic light emitting diode display using the same. The photoresist includes a copolymer that is made from two different monomers. When the copolymer is used as a photoresist, the photoresist has the characteristic that it becomes insoluble when exposed to an ultraviolet light having a wavelength of 365 nm.
Abstract:
The present disclosure relates to a large area organic light emitting diode display and a method for manufacturing the same. A photoresist is deposited across first and second pixel areas of the display. The photoresist is patterned to generate a patterned photoresist by stripping away first portions of the photoresist in the first pixel areas while keeping second portions of the photoresist in the second pixel areas. An organic emission layer is deposited across the first and second pixel areas over the patterned photoresist. An electron transport layer is deposited across the first pixel areas and the second pixel areas over the organic emission layer. Portions of the organic emission layer and the electron transport layer in the second pixel areas are removed by stripping away the second portions of the photoresist while keeping portions of the organic emission layer and the electron transport layer in the first pixel areas.
Abstract:
A highly fluorinated photoresist employing a photodimerization chemistry and a method for manufacturing an organic light emitting diode display using the same. The photoresist includes a copolymer that is made from two different monomers. When the copolymer is used as a photoresist, the photoresist has the characteristic that it becomes insoluble when exposed to an ultraviolet light having a wavelength of 365 nm.