Abstract:
An electronic induction heat cooking apparatus includes a rectifier for rectifying an input voltage and outputting a direct current (DC) voltage; a plurality of switching elements for switching the DC voltage output through the rectifier; a plurality of heating coils for heating a cooking utensil by controlling the plurality of switching elements; a controller for controlling the plurality of switching elements according to a plurality of operation modes; and a supporting member in which at least one of the plurality of heating coils is mounted. The supporting member includes a coil insertion part, into which the heating coils are inserted, and the magnetic member is inserted into the supporting member to directly face the heating coils at the lower side of the heating coils.
Abstract:
A cooking apparatus includes: a working coil, an inverter including a plurality of switching elements and configured to apply, by operating the plurality of switching elements, a resonant current of a predetermined frequency to the working coil, a phase detector configured to detect a phase difference between the resonant current and a voltage applied to an output terminal of the inverter, and a controller configured to calculate, based on the detected phase difference, a temperature of a target object that is placed above the working coil.
Abstract:
An induction heat cooking apparatus includes a rectifier to rectify an input voltage and to output a DC voltage; a plurality of switching devices to switch the DC voltage output from the rectifier; a plurality of heating coils to heat a cooking container according to control of the plurality of switching devices; and a controller to control the plurality switching devices to simultaneously drive two heating coils connected in parallel with each other among the plurality of heating coils.
Abstract:
A cooker, a method for controlling power of a cooker, and a power control system including the same are provided. A high power cooking device can be used without making an additional power construction work or causing a power circuit breaker installed in an input terminal of a household power source to be opened. Driving power of a burner is controlled or distributed by using a current flowing in a power circuit breaker or an overcurrent breaker installed in a load end, whereby power operation efficiency of an input power source can be enhanced and the input power source cannot be broken.
Abstract:
An electronic induction heat cooking apparatus includes a rectifier including a bridge diode, for rectifying an input voltage and outputting a direct current (DC) voltage; a plurality of switching elements for switching the DC voltage output through the rectifier; a controller for controlling the plurality of switching elements; a plurality of heating coils for heating a cooking utensil by controlling the plurality of switching elements; a heat sink having the plurality of switching elements mounted thereon, for cooling the plurality of switching elements; a cover covering the plurality of switching elements; and coupling members for coupling the heat sink to the cover. A radiation fin for cooling the plurality of switching elements is formed on the cover.
Abstract:
An induction heating cooking apparatus and a control method thereof are provided. A vessel can be effectively heated by using a plurality of heating coils regardless of a position of the vessel. By connecting a plurality of heating coils to a smaller amount of inverters through relays, only a heating coil on which a vessel is placed, among the plurality of heating coils, can be heated. Also, by connecting the heating coils in series, a current flowing in the heating coil can be lowered, and thus, a rated current of the inverter can be lowered. Also, by connecting relays and heating coils such that a larger amount of heating coils are operated, while minimizing the amount of inverters, manufacturing cost can be reduced, operation efficiency can be increased, and stability of the cooking apparatus can be enhanced.
Abstract:
An electronic induction heat cooking apparatus includes first and second cooker modules including at least one heating coil and a dual heating coil, the first cooker module includes any one of an inner coil and an outer coil included in the dual heating coil, switching elements for operating the coil and a first microcontroller unit for controlling the switching elements, the second cooker module includes the other of the inner coil and the outer coil included in the dual heating coil, switching elements for operating the other coil and a second microcontroller unit for controlling the switching elements, and the first microcontroller unit and the second microcontroller unit share an oscillator.
Abstract:
Provided is an induction heat cooking apparatus. The induction heat cooking apparatus includes a rectifying part rectifying an input voltage to output a DC voltage, an inverter switching the DC voltage outputted through the rectifying part to generate an AC voltage, a first heating part operated by the AC voltage applied from the inverter, a second heating part connected to the first heating part in parallel, the second heating part being operated by the AC voltage applied from the inverter, and a switching signal generation part controlling an operation state of each of the first and second heating parts from the inverter according to an operation mode inputted from the outside. The switching signal generation part includes a photo coupler.
Abstract:
An induction heating cooker is provided. The induction heating cooker may include a rectifier to rectify an input voltage into a direct current (DC) voltage and output the DC voltage, an inverter to generate an alternating current (AC) voltage by switching the DC voltage, a first heater driven by the AC voltage so as to heat a first cooking container, a second heater connected in parallel to the first heater, and driven by the AC voltage so as to heat a second cooking container, and a switching controller configured to output a switching signal to the inverter for controlling the first and second heaters in accordance with a selected operation mode. The selected operation mode may be a first operation mode for driving only the first heater, a second operation mode for driving only the second heater, or a third operation mode for driving both the first and second heaters at the same time.
Abstract:
An electronic induction heat cooking apparatus includes a rectifier for rectifying an input voltage and outputting a direct current (DC) voltage, a plurality of switching elements for switching the DC voltage output through the rectifier, a plurality of heating coils for heating a cooking utensil by controlling the plurality of switching elements, a controller for controlling the plurality of switching elements, and a support member including grooves, into which the heating coils are inserted. A width of a cross section of each of the grooves decreases toward an entrance of each of the grooves.