Abstract:
Reduction of audio truncation when transcoding speech data from one coding format to another. Embodiments include receiving packets of a first communication session containing first encrypted speech data encoded according to a vocoder of a first type and encrypted using an encryption protocol, and containing a first encryption protocol identification information distributed among the received packets. Further embodiments include extracting the first encryption protocol identification information from the received packets and processing the received packets based on the first encryption identification information. Embodiments include transmitting one or more voice header packets containing a second encryption protocol identification information in a second communication session as well as transmitting packets in the second communication session containing second encrypted speech data encoded according to a vocoder of a second type.
Abstract:
One example radio frequency (RF) site controller is configured to communicate with a first communication device over a control channel to establish a traffic channel over which the first communication device is configured to communicate with a second communication device. The RF site controller may control the control channel to switch between operating in (i) a keyed state (in other words a full-power state) for a first dynamic period of time and (ii) a de-keyed state (in other words, a lower-powered state) for a second dynamic period of time. At least one of the first dynamic period of time and the second dynamic period of time may be based on a characteristic of at least one of a group consisting of a coverage area being serviced by the RF site controller and one or more communication devices being serviced by the RF site controller.
Abstract:
One example radio frequency (RF) site controller is configured to communicate with a first communication device over a control channel to establish a traffic channel over which the first communication device is configured to communicate with a second communication device. The RF site controller may control the control channel to switch between operating in (i) a keyed state (in other words a full-power state) for a first dynamic period of time and (ii) a de-keyed state (in other words, a lower-powered state) for a second dynamic period of time. At least one of the first dynamic period of time and the second dynamic period of time may be based on a characteristic of at least one of a group consisting of a coverage area being serviced by the RF site controller and one or more communication devices being serviced by the RF site controller.
Abstract:
Disclosed herein are methods and systems for talkgroup-state-dependent routing of group data. An embodiment takes the form of a process that includes handling receipt of packet data addressed to a talkgroup by responsively: determining whether the talkgroup currently has an active voice session on a voice channel; if not, then routing the received packet data to the talkgroup on a data channel; and if so, then routing the received packet data to the talkgroup via metadata fields in the voice channel.