Abstract:
Disclosed herein are methods and systems for allocating resources from component carriers to a public-safety mobile radio. An embodiment takes the form of a process that is carried out by carried out by a Long-Term Evolution (LTE) Evolved Node B (eNodeB). The eNodeB makes a first determination to allocate resources to a given mobile radio. The eNodeB makes a second determination that the given mobile radio is a public-safety mobile radio. In response to making the first and second determinations, the eNodeB selects, based on one or more public-safety-communication criteria, a component carrier from among a plurality of component carriers managed by the eNodeB. The eNodeB allocates resources on the selected eNodeB component carrier to the given mobile radio.
Abstract:
A broadband device (105) can detect a proximate narrowband transmission (152) from a narrowband communication device (145). The narrowband transmission (152) can be in close enough proximity (155) to at least one bearer channel of the broadband device (105) to result in interference on the narrowband reception (152) when the broadband device (105) is transmitting and the narrowband communication device (145) is concurrently receiving. Responsive to the detecting, the broadband device (105) can gate a broadband transmission (142) to ensure the broadband transmission (142) does not interfere with the proximate narrowband reception (152). In absence of detecting the narrowband transmission (152), the broadband transmission (142) from the broadband device (105) would not be gated.