Abstract:
A system and method of controlling a cluster tool apparatus, wherein the cluster tool includes one or more processing modules and a robot that is configured to move a semiconductor product to and from the one or more processing modules, the cluster tool configured for processing semiconductor products. The method of controlling the cluster tool apparatus to perform a processing cycle includes receiving a plurality of system parameters from a user interface, wherein the system parameters relate to one or more processing steps of the processing cycle, determining a schedule for performing the processing cycle utilizing the one or more processing modules, wherein the schedule being determined based on a semiconductor product residency parameter.
Abstract:
Since single and dual-arm tools behave differently, it is difficult to coordinate their activities in a hybrid multi-cluster tool that is composed of both single- and dual-arm tools. Aiming at finding an optimal one-wafer cyclic schedule for a treelike hybrid multi-cluster tool whose bottleneck tool is process-bound, the present work extends a resource-oriented Petri net to model such system. By the developed Petri net model, to find a one-wafer cyclic schedule is to determine robot waiting times. By doing so, it is shown that, for any treelike hybrid multi-cluster tool whose bottleneck tool is process-bound, there is always a one-wafer cyclic schedule. Then, computationally efficient algorithms are developed to obtain the minimal cycle time and the optimal one-wafer cyclic schedule. Examples are given to illustrate the developed method.
Abstract:
A system and method for a cluster tool apparatus for processing a semiconductor product including processing modules located adjacent each other and configured to process a semiconductor module, loadlocks configured to retain and dispense unprocessed semiconductor products and each positioned adjacent one of the processing modules, a robot configured to load, transfer and unload a semiconductor product to and from the processing modules, a hardware controller in communication with the robot and executing a method to close down the cluster tool apparatus to an idle state, the method including determining a status of the processing modules, determining if a close down process is required based on the status or based on a close down signal, and, if required, determining a schedule for a close down process based on a semiconductor product residency parameter, and controlling the operation of the robot based on the schedule to perform the close down process.
Abstract:
Since single and dual-arm tools behave differently, it is difficult to coordinate their activities in a hybrid multi-cluster tool that is composed of both single- and dual-arm tools. Aiming at finding an optimal one-wafer cyclic schedule for a treelike hybrid multi-cluster tool whose bottleneck tool is process-bound, the present work extends a resource-oriented Petri net to model such system. By the developed Petri net model, to find a one-wafer cyclic schedule is to determine robot waiting times. By doing so, it is shown that, for any treelike hybrid multi-cluster tool whose bottleneck tool is process-bound, there is always a one-wafer cyclic schedule. Then, computationally efficient algorithms are developed to obtain the minimal cycle time and the optimal one-wafer cyclic schedule. Examples are given to illustrate the developed method.
Abstract:
Recent trends of larger wafer and smaller lot sizes bring cluster tools with frequent lot switches. Practitioners must deal with more transient processes during such switches, including start-up and close-down processes. To obtain higher yield, it is necessary to shorten the duration of transient processes. Much prior effort was poured into the modeling and scheduling for the steady state of cluster tools. In the existing literature, no attention has been turned to optimize the close-down process for single-arm cluster tools with wafer residency constraints. This invention intends to do so by 1) developing a Petri net model to analyze their scheduling properties and 2) proposing Petri net-based methods to solve their close-down optimal scheduling problems under different workloads among their process steps. Industrial examples are used to illustrate the effectiveness and application of the proposed methods.
Abstract:
A method determines an optimized production schedule of a production line including a hybrid multi-cluster tool formed by a plurality of single-arm tools and dual-arm tools interconnected with each other. The method includes determining time for individual operations of a robotic arm and a processing module in the plurality of single-arm tools and dual-arm tools; determining robot waiting time of the single-arm tools and dual-arm tools based on the time for individual operations and different connection relationships of the plurality of single-arm tools and dual-arm tools; determining whether the optimized production schedule exists using the determined waiting time, wherein the optimized production schedule only exists if the hybrid multi-cluster tool is process-dominant where the robot activity time of the plurality of single-arm tools and dual-arm tools is substantially shorter than processing time at the processing module; and determining the optimized production schedule if the optimized production schedule exists.
Abstract:
A method determines an optimized production schedule of a production line including a hybrid multi-cluster tool formed by a plurality of single-arm tools and dual-arm tools interconnected with each other. The method includes determining time for individual operations of a robotic arm and a processing module in the plurality of single-arm tools and dual-arm tools; determining robot waiting time of the single-arm tools and dual-arm tools based on the time for individual operations and different connection relationships of the plurality of single-arm tools and dual-arm tools; determining whether the optimized production schedule exists using the determined waiting time, wherein the optimized production schedule only exists if the hybrid multi-cluster tool is process-dominant where the robot activity time of the plurality of single-arm tools and dual-arm tools is substantially shorter than processing time at the processing module; and determining the optimized production schedule if the optimized production schedule exists.
Abstract:
The scheduling problem of a multi-cluster tool with a tree topology whose bottleneck tool is process-bound is investigated. A method for scheduling the multi-cluster tool to thereby generate an optimal one-wafer cyclic schedule for this multi-cluster tool is provided. A Petri net (PN) model is developed for the multi-cluster tool by explicitly modeling robot waiting times such that a schedule is determined by setting the robot waiting times. Based on the PN model, sufficient and necessary conditions under which a one-wafer cyclic schedule exists are derived and it is shown that an optimal one-wafer cyclic schedule can be always found. Then, efficient algorithms are given to find the optimal cycle time and its optimal schedule. Examples are used to demonstrate the scheduling method.
Abstract:
Recent trends of larger wafer and smaller lot sizes bring cluster tools with frequent lot switches. Practitioners must deal with more transient processes during such switches, including start-up and close-down processes. To obtain higher yield, it is necessary to shorten the duration of transient processes. Much prior effort was poured into the modeling and scheduling for the steady state of cluster tools. In the existing literature, no attention has been turned to optimize the close-down process for single-arm cluster tools with wafer residency constraints. This invention intends to do so by 1) developing a Petri net model to analyze their scheduling properties and 2) proposing Petri net-based methods to solve their close-down optimal scheduling problems under different workloads among their process steps. Industrial examples are used to illustrate the effectiveness and application of the proposed methods.
Abstract:
A method for scheduling dual-armed cluster tools with wafer revisiting is provided. In order to speed up start-up transient processes, the present invention adopts a program evaluation and review technique for the analysis of start-up transient processes and develops optimization algorithms for their scheduling for dual-arm cluster tools. Then, their complexity is analyzed.