摘要:
A diagnostic procedure first records a patient's auditory brainstem response (ABR) to each of a plurality of auditory stimuli. The stimuli comprise 60 dB nHL clicks using high pass noise masking procedures to isolate the cochlear response within specific frequency bands. These derived band ABRs are temporally shifted to align the wave V peak amplitudes. The time-shifted responses are then summed to create the stacked ABR. The stacked wave V ABR amplitude is compared to a threshold value. The stacked wave V ABR amplitudes for patients having small (less than or equal to 1 cm.) intracanalicular tumors are measurably lower than those for otherwise similar individuals without tumors.
摘要:
A method for determining the statistical probability that an auditory brainstem response (ABR) to an acoustic stimulus is present in a human test subject. The method employs an algorithm that provides a continuously evolving estimate of the probability of ABR presence as acquired data accumulates. The algorithm employs a radical modification of a conventional FSP approach.
摘要:
A procedure for diagnosing cochlear hydrops is based, in part, on an analysis of the patient's auditory brainstem response (ABR) to stimuli. The patient's ABR to a broadband click stimulus is recorded. A plurality of masked ABR's are also recorded, wherein the stimulus is masked by high-pass noise with a plurality of high-pass cut-off frequencies. The latency difference between the wave V component in the unmasked click alone response and the undermasked wave V component of a low cut-off frequency high-pass response is then calculated. If an undermasked component is not present, the normal wave V component is used. The measured latency difference is combined with another measure, such as the wave V amplitude ratio. A distribution of the combined measure is then plotted for the population and a threshold established for diagnosing cochlear hydrops. Alternatively, the joint distribution of the individual measures may be used in situations where the individual measures are known to be independent.
摘要:
A procedure for diagnosing cochlear hydrops is based, in part, on an analysis of the patient's auditory brainstem response (ABR) to stimuli. The patient's ABR to a broadband click stimulus is recorded. A plurality of masked ABR's are also recorded, wherein the stimulus is masked by high-pass noise with a plurality of high-pass cut-off frequencies. The latency difference between the wave V component in the unmasked click alone response and the undermasked wave V component of a low cut-off frequency high-pass response is then calculated. If an undermasked component is not present, the normal wave V component is used. The measured latency difference is combined with another measure, such as the wave V amplitude ratio. A distribution of the combined measure is then plotted for the population and a threshold established for diagnosing cochlear hydrops. Alternatively, the joint distribution of the individual measures may be used in situations where the individual measures are known to be independent.
摘要:
In a diagnostic system wherein a patient's auditory brainstem response (ABR) to each of a plurality of auditory stimuli is recorded and wherein a plurality of derived-band ABRs representing cochlear responses in a plurality of respective frequency bands are constructed, the derived-band ABRs are temporarily aligned based on observable peaks in integrated, detrended derived-band waveforms.
摘要:
A diagnostic procedure first records a patient's auditory brainstem response (ABR) to each of a plurality of auditory stimuli. The stimuli comprise 60 dB nHL clicks using high pass noise masking procedures to isolate the cochlear response within specific frequency bands. These derived band ABRs are temporally shifted to align the wave V peak amplitudes. The time-shifted responses are then summed to create the stacked ABR. The stacked wave V ABR amplitude is compared to a threshold value. The stacked wave V ABR amplitudes for patients having small (less than or equal to 1 cm.) intracanalicular tumors are measurably lower than those for otherwise similar individuals without tumors.