摘要:
An intrusion detection system (IDS) comprises a network processor (NP) coupled to a memory unit for storing programs and data. The NP is also coupled to one or more parallel pattern detection engines (PPDE) which provide high speed parallel detection of patterns in an input data stream. Each PPDE comprises many processing units (PUs) each designed to store intrusion signatures as a sequence of data with selected operation codes. The PUs have configuration registers for selecting modes of pattern recognition. Each PU compares a byte at each clock cycle. If a sequence of bytes from the input pattern match a stored pattern, the identification of the PU detecting the pattern is outputted with any applicable comparison data. By storing intrusion signatures in many parallel PUs, the IDS can process network data at the NP processing speed. PUs may be cascaded to increase intrusion coverage or to detect long intrusion signatures.
摘要:
A parallel pattern detection engine (PPDE) comprise multiple processing units (PUs) customized to do various modes of pattern recognition. The PUs are loaded with different patterns and the input data to be matched is provided to the PUs in parallel. Each pattern has an Opcode that defines what action to take when a particular data in the input data stream either matches or does not match the corresponding data being compared during a clock cycle. Each of the PUs communicate selected information so that PUs may be cascaded to enable longer patterns to be matched or to allow more patterns to be processed in parallel for a particular input data stream.
摘要:
A parallel pattern detection engine (PPDE) comprise multiple processing units (PUs) customized to do various modes of pattern recognition. The PUs are loaded with different patterns and the input data to be matched is provided to the PUs in parallel. Each pattern has an Opcode that defines what action to take when a particular data in the input data stream either matches or does not match the corresponding data being compared during a clock cycle. Each of the PUs communicate selected information so that PUs may be cascaded to enable longer patterns to be matched or to allow more patterns to be processed in parallel for a particular input data stream.
摘要:
A parallel pattern detection engine (PPDE) comprise multiple processing units (PUs) customized to do various modes of pattern recognition. The PUs are loaded with different patterns and the input data to be matched is provided to the PUs in parallel. Each pattern has an Opcode that defines what action to take when a particular data in the input data stream either matches or does not match the corresponding data being compared during a clock cycle. Each of the PUs communicate selected information so that PUs may be cascaded to enable longer patterns to be matched or to allow more patterns to be processed in parallel for a particular input data stream.
摘要:
Processing units (PUs) are coupled with a gated bi-directional bus structure that allows the PUs to be cascaded. Each PUn has communication logic and function logic. Each PUn is physically coupled to two other PUs, a PUp and a PUf. The communication logic receives Link Out data from a PUp and sends Link In data to a PUf. The communication logic has register bits for enabling and disabling the data transmission. The communication logic couples the Link Out data from a PUp to the function logic and couples Link In data to the PUp from the function logic in response to the register bits. The function logic receives output data from the PUn and Link In data from the communication logic and forms Link Out data which is coupled to the PUf. The function logic couples Link In data from the PUf to the PUn and to the communication logic.
摘要:
A parallel pattern detection engine (PPDE) comprise multiple processing units (PUs) customized to do various modes of pattern recognition. The PUs are loaded with different patterns and the input data to be matched is provided to the PUs in parallel. Each pattern has an Opcode that defines what action to take when a particular data in the input data stream either matches or does not match the corresponding data being compared during a clock cycle. Each of the PUs communicate selected information so that PUs may be cascaded to enable longer patterns to be matched or to allow more patterns to be processed in parallel for a particular input data stream.
摘要:
Systems and methods for detecting and controlling leaks via analysis of substance flow data. A leak management system including a processor that receives substance flow data from a plurality of substance flow sensors, analyzes the substance flow data to identify at least one discrepancy within said substance flow data, and transmits at least one alert and/or takes preventative or corrective action upon identification of said at least one discrepancy. In one aspect, identifying said at least one discrepancy includes identifying a predetermined difference between the value read at the primary one of the plurality of substance flow sensors and the sum of all values read at all of the secondary ones of the plurality of substance flow sensors, wherein the predetermined difference accounts for a margin of error. Flow sensors may be recharged by the flow of the substance through the sensor.
摘要:
A processing system (500) addresses an electronic display (100) comprising picture elements (pixels) (108) controlled by a plurality of first and second electrodes (106, 104). The plurality of first electrodes (106) are controlled by a plurality of periodic first drive signals (400) having a predetermined number of time slots independent of data being displayed. The plurality of second electrodes (104) are controlled by a plurality of second drive signals responsive of the data being displayed. The processing system (500) comprises calculating engine (610, 612) calculating from data being received the plurality of second drive signals for one of the plurality of second electrodes (104) for a time slot of the predetermined number of time slots. The calculating engine (610, 612) calculates one of the plurality of drive signals for the one of the plurality of second electrodes (104) as a function of the plurality of periodic first drive signals (400) for the time slot and a selected plurality of pixel values for pixels collectively controlled by the one of the plurality of second electrodes. The calculating engine (610, 612) represents the plurality of periodic first drive signals as a sequency-ordered Walsh-Hadamard transform (WHT) matrix (300) having a number of rows corresponding to the plurality of first electrodes (106) and a number of columns corresponding to the predetermined number of time slots (410-412). An identifier (510) identifies a plurality of hierarchical tree structures (Rows 1-8) corresponding to the WHT matrix (300) representation of the plurality of periodic first drive signals (400). An encoder (1504) encodes the data. A processor processes (510) the encoded data and the hierarchical tree structures (Rows 1-8) identified in the WHT matrix (300) for addressing of the pixels (108) of the electronic display (100).
摘要:
Systems and methods for detecting and controlling leaks via analysis of substance flow data. A leak management system including a processor that receives substance flow data from a plurality of substance flow sensors, analyzes the substance flow data to identify at least one discrepancy within said substance flow data, and transmits at least one alert and/or takes preventative or corrective action upon identification of said at least one discrepancy. In one aspect, identifying said at least one discrepancy includes identifying a predetermined difference between the value read at the primary one of the plurality of substance flow sensors and the sum of all values read at all of the secondary ones of the plurality of substance flow sensors, wherein the predetermined difference accounts for a margin of error. Flow sensors may be recharged by the flow of the substance through the sensor.
摘要:
A method and apparatus to facilitate managing communications with at least one wireless node (102, 103) having an outbound payload memory in a severely resource-constrained wireless network (100) can provide for a coordinator node (101) for that network providing (201) information regarding remaining capacity of those outbound payload memories and then automatically using (202) that information in integral combination with a bandwidth allocation management process to control allocation of at least one wireless communication resource by which the wireless nodes can transmit items contained in the outbound payload memory.