Abstract:
A method for forming a capacitive structure in a metal level of an interconnection stack including a succession of metal levels and of via levels, including the steps of: forming, in the metal level, at least one conductive track in which a trench is defined; conformally forming an insulating layer on the structure; forming, in the trench, a conductive material; and planarizing the structure.
Abstract:
An artificial neural network (ANN) based system that is adapted to process an input pattern to generate an output pattern related thereto having a different number of components than the input pattern. The system (26) is comprised of an ANN (27) and a memory (28), such as a DRAM memory, that are serially connected. The input pattern (23) is applied to a processor (22), where it can be processed or not (the most general case), before it is applied to the ANN and stored therein as a prototype (if learned). A category is associated with each stored prototype. The processor computes the coefficients that allow the determination of the estimated values of the output pattern, these coefficients are the components of a so-called intermediate pattern (24). Assuming the ANN has already learned a number of input patterns, when a new input pattern is presented to the ANN in the recognition phase, the category of the closest prototype is output therefrom and is used as a pointer to the memory. In turn, the memory outputs the corresponding intermediate pattern. The input pattern and the intermediate pattern are applied to the processor to construct the output pattern (25) using the coefficients. Typically, the input pattern is a block of pixels in the field of scaling images.
Abstract:
An artificial neural network (ANN) based system that is adapted to process an input pattern to generate an output pattern related thereto having a different number of components than the input pattern. The system (26) is comprised of an ANN (27) and a memory (28), such as a DRAM memory, that are serially connected. The input pattern (23) is applied to a processor (22), where it can be processed or not (the most general case), before it is applied to the ANN and stored therein as a prototype (if learned). A category is associated with each stored prototype. The processor computes the coefficients that allow the determination of the estimated values of the output pattern, these coefficients are the components of a so-called intermediate pattern (24). Assuming the ANN has already learned a number of input patterns, when a new input pattern is presented to the ANN in the recognition phase, the category of the closest prototype is output therefrom and is used as a pointer to the memory. In turn, the memory outputs the corresponding intermediate pattern. The input pattern and the intermediate pattern are applied to the processor to construct the output pattern (25) using the coefficients. Typically, the input pattern is a block of pixels in the field of scaling images.
Abstract:
An artificial neural network (ANN) based system that is adapted to process an input pattern to generate an output pattern related thereto having a different number of components than the input pattern. The system (26) is comprised of an ANN (27) and a memory (28), such as a DRAM memory, that are serially connected. The input pattern (23) is applied to a processor (22), where it can be processed or not (the most general case), before it is applied to the ANN and stored therein as a prototype (if learned). A category is associated with each stored prototype. The processor computes the coefficients that allow the determination of the estimated values of the output pattern, these coefficients are the components of a so-called intermediate pattern (24). Assuming the ANN has already learned a number of input patterns, when a new input pattern is presented to the ANN in the recognition phase, the category of the closest prototype is output therefrom and is used as a pointer to the memory. In turn, the memory outputs the corresponding intermediate pattern. The input pattern and the intermediate pattern are applied to the processor to construct the output pattern (25) using the coefficients. Typically, the input pattern is a block of pixels in the field of scaling images.
Abstract:
A base neural semiconductor chip (10) including a neural network or unit (11(#)). The neural network (11(#)) has a plurality of neuron circuits fed by different buses transporting data such as the input vector data, set-up parameters, and control signals. Each neuron circuit (11) includes logic for generating local result signals of the "fire" type (F) and a local output signal (NOUT) of the distance or category type on respective buses (NR-BUS, NOUT-BUS). An OR circuit (12) performs an OR function for all corresponding local result and output signals to generate respective first global result (R*) and output (OUT*) signals on respective buses (R*-BUS, OUT*-BUS) that are merged in an on-chip common communication bus (COM*-BUS) shared by all neuron circuits of the chip. In a multi-chip network, an additional OR function is performed between all corresponding first global result and output signals (which are intermediate signals) to generate second global result (R**) and output (OUT**) signals, preferably by dotting onto an off-chip common communication bus (COM**-BUS) in the chip's driver block (19). This latter bus is shared by all the base neural network chips that are connected to it in order to incorporate a neural network of the desired size. In the chip, a multiplexer (21) may select either the intermediate output or the global output signal to be fed back to all neuron circuits of the neural network, depending on whether the chip is used in a single or multi-chip environment via a feed-back bus (OR-BUS). The feedback signal is the result of a collective processing of all the local output signals.
Abstract:
Each daisy chain circuit is serially connected to the two adjacent neuron circuits, so that all the neuron circuits form a chain. The daisy chain circuit distinguishes between the two possible states of the neuron circuit (engaged or free) and identifies the first free "or ready to learn" neuron circuit in the chain, based on the respective values of the input (DCI) and output (DCO) signals of the daisy chain circuit. The ready to learn neuron circuit is the only neuron circuit of the neural network having daisy chain input and output signals complementary to each other. The daisy chain circuit includes a 1-bit register (601) controlled by a store enable signal (ST) which is active at initialization or, during the learning phase when a new neuron circuit is engaged. At initialization, all the Daisy registers of the chain are forced to a first logic value. The DCI input of the first daisy chain circuit in the chain is connected to a second logic value, such that after initialization, it is the ready to learn neuron circuit. In the learning phase, the ready to learn neuron's 1-bit daisy register contents are set to the second logic value by the store enable signal, it is said "engaged". As neurons are engaged, each subsequent neuron circuit in the chain then becomes the next ready to learn neuron circuit.
Abstract:
The method and circuits of the present invention aim to associate a complex component operator (CC_op) to each component of an input pattern presented to an input space mapping algorithm based artificial neural network (ANN) during the distance evaluation process. A complex operator consists in the description of a function and a set of parameters attached thereto. The function is a mathematical entity (either a logic operator e.g. match(Ai,Bi), abs(Ai−Bi), . . . or an arithmetic operator, e.g. >,
Abstract:
A parallel pattern detection engine (PPDE) comprise multiple processing units (PUs) customized to do various modes of pattern recognition. The PUs are loaded with different patterns and the input data to be matched is provided to the PUs in parallel. Each pattern has an Opcode that defines what action to take when a particular data in the input data stream either matches or does not match the corresponding data being compared during a clock cycle. Each of the PUs communicate selected information so that PUs may be cascaded to enable longer patterns to be matched or to allow more patterns to be processed in parallel for a particular input data stream.
Abstract:
Processing units (PUs) are coupled with a gated bi-directional bus structure that allows the PUs to be cascaded. Each PUn has communication logic and function logic. Each PUn is physically coupled to two other PUs, a PUp and a PUf. The communication logic receives Link Out data from a PUp and sends Link In data to a PUf. The communication logic has register bits for enabling and disabling the data transmission. The communication logic couples the Link Out data from a PUp to the function logic and couples Link In data to the PUp from the function logic in response to the register bits. The function logic receives output data from the PUn and Link In data from the communication logic and forms Link Out data which is coupled to the PUf. The function logic couples Link In data from the PUf to the PUn and to the communication logic.
Abstract:
The improved neuron is connected to input buses which transport input data and control signals. It basically consists of a computation block, a register block, an evaluation block and a daisy chain block. All these blocks, except the computation block substantially have a symmetric construction. Registers are used to store data: the local norm and context, the distance, the AIF value and the category. The improved neuron further needs some R/W memory capacity which may be placed either in the neuron or outside. The evaluation circuit is connected to an output bus to generate global signals thereon. The daisy chain block allows to chain the improved neuron with others to form an artificial neural network (ANN). The improved neuron may work either as a single neuron (single mode) or as two independent neurons (dual mode). In the latter case, the computation block, which is common to the two dual neurons, must operate sequentially to service one neuron after the other. The selection between the two modes (single/dual) is made by the user which stores a specific logic value in a dedicated register of the control logic circuitry in each improved neuron.