摘要:
A drive circuit includes a first input terminal configured to receive a first input signal, a first output terminal configured to provide a first drive signal, a second output terminal configured to provide a second drive signal, and a mode selection terminal configured to have a mode selection element connected thereto. The drive circuit is configured to generate the first and second drive signals dependent on the first input signal such that there is a dead time between a time when one of the first and second drive signals assumes an off-level and a time when the other one of the first and second drive signals assumes an on-level, and evaluate at least one electrical parameter of the mode selection element and is configured to adjust a first signal range of the first drive signal and a second signal range of the second drive signal dependent on the evaluated parameter and to adjust the dead time dependent on the evaluated parameter.
摘要:
A drive circuit includes a first input terminal configured to receive a first input signal, a first output terminal configured to provide a first drive signal, a second output terminal configured to provide a second drive signal, and a mode selection terminal configured to have a mode selection element connected thereto. The drive circuit is configured to generate the first and second drive signals dependent on the first input signal such that there is a dead time between a time when one of the first and second drive signals assumes an off-level and a time when the other one of the first and second drive signals assumes an on-level, and evaluate at least one electrical parameter of the mode selection element and is configured to adjust a first signal range of the first drive signal and a second signal range of the second drive signal dependent on the evaluated parameter and to adjust the dead time dependent on the evaluated parameter.
摘要:
Preferred embodiments of the present invention are a switching converter, an integrated circuit package, and method for controlling a switching converter. An embodiment of the invention is a switching converter comprising a first compensation network having a first node coupled to an error voltage and a second node coupled to electrical ground and a second compensation network having an input coupled to the error voltage. A frequency domain transfer function of the first compensation network comprises a first zero and a plurality of first poles, and a frequency domain transfer function of the second compensation network comprises a second zero and a second pole.
摘要:
Preferred embodiments of the present invention are a switching converter, an integrated circuit package, and method for controlling a switching converter. An embodiment of the invention is a switching converter comprising a first compensation network having a first node coupled to an error voltage and a second node coupled to electrical ground and a second compensation network having an input coupled to the error voltage. A frequency domain transfer function of the first compensation network comprises a first zero and a plurality of first poles, and a frequency domain transfer function of the second compensation network comprises a second zero and a second pole.
摘要:
A system and method for adapting a width of a clocking pulse for clocking a DC-DC converter, wherein the width of the clocking pulse is selected based upon the duty cycle of the DC-DC converter. When the DC-DC converter operates below a predefined threshold duty cycle, a clocking pulse of a first width is selected to allow operation of the converter at a minimum predefined duty cycle with a clocking frequency that minimizes output voltage ripple. The first width corresponds to an on-time of a switching transistor of the DC-DC converter when the converter is operated at the minimum duty cycle. When the DC-DC converter operates above the predefined threshold duty cycle, a clocking pulse of a second width is selected to allow operation of the converter at high duty cycles while simultaneously avoiding missed inductor current pulses and generation of sub-harmonic voltage oscillations.
摘要:
A low-dropout voltage regulator includes a power transistor configured to receive an input voltage and to provide a regulated output voltage at an output voltage node. The power transistor includes a control electrode configured to receive a driver signal. A reference circuit is configured to generate a reference voltage. A feedback network is coupled to the power transistor and is configured to provide a first feedback signal and a second feedback signal. The first feedback signal represents the output voltage and the second feedback signal represents an output voltage gradient. An error amplifier is configured to receive the reference voltage and the first feedback signal representing the output voltage. The error amplifier is configured to generate the driver signal dependent on the reference voltage and the first feedback signal. The error amplifier includes an output stage that is biased with a bias current responsive to the second feedback signal.
摘要:
A system and method for adapting a width of a clocking pulse for clocking a DC-DC converter, wherein the width of the clocking pulse is selected based upon the duty cycle of the DC-DC converter. When the DC-DC converter operates below a predefined threshold duty cycle, a clocking pulse of a first width is selected to allow operation of the converter at a minimum predefined duty cycle with a clocking frequency that minimizes output voltage ripple. The first width corresponds to an on-time of a switching transistor of the DC-DC converter when the converter is operated at the minimum duty cycle. When the DC-DC converter operates above the predefined threshold duty cycle, a clocking pulse of a second width is selected to allow operation of the converter at high duty cycles while simultaneously avoiding missed inductor current pulses and generation of sub-harmonic voltage oscillations.
摘要:
A low-dropout voltage regulator includes a power transistor configured to receive an input voltage and to provide a regulated output voltage at an output voltage node. The power transistor includes a control electrode configured to receive a driver signal. A reference circuit is configured to generate a reference voltage. A feedback network is coupled to the power transistor and is configured to provide a first feedback signal and a second feedback signal. The first feedback signal represents the output voltage and the second feedback signal represents an output voltage gradient. An error amplifier is configured to receive the reference voltage and the first feedback signal representing the output voltage. The error amplifier is configured to generate the driver signal dependent on the reference voltage and the first feedback signal. The error amplifier includes an output stage that is biased with a bias current responsive to the second feedback signal.