摘要:
A gate driving circuit (60) separated into a plurality of stages (ST) is provided. In each of the stages (ST), TFT elements (T1) through (T4) are provided, branch lines (78) that connect clock lines (72, 74) to the TFT elements are provided. Junction lines (79A, 79B) are each extended from the branch line (78A) of interest to electrically connect the branch line (78A) of interest to the TFT elements (T2, T4) provided in the stage (ST(j)) different from the stage (ST (j−1)) where the TFT elements (T1, T3) connected to the branch line (78A) of interest are provided.
摘要:
A gate driving circuit (60) separated into a plurality of stages (ST) is provided. In each of the stages (ST), TFT elements (T1) through (T4) are provided, branch lines (78) that connect clock lines (72, 74) to the TFT elements are provided. Junction lines (79A, 79B) are each extended from the branch line (78A) of interest to electrically connect the branch line (78A) of interest to the TFT elements (T2, T4) provided in the stage (ST(j)) different from the stage (ST (j−1)) where the TFT elements (T1, T3) connected to the branch line (78A) of interest are provided.
摘要:
A shift register stage includes a first transistor having a capacitor electrode (CAPm) that faces, in a film thickness direction, at least one of source and drain electrodes (Tr4s and Tr4d) of the first transistor in a side opposite to a gate electrode (Tr4g) of the first transistor. One of (i) the capacitor electrode (CAPm) and (ii) the one of the source and drain electrodes (Tr4s and Tr4d) which faces the capacitor electrode (CAPm), is electrically connected to a control electrode of an output transistor of the shift register stage.
摘要:
An embodiment of the present invention provides a TFT array substrate, in which TFT elements and pixel electrodes being correspondingly connected with the TFT elements are arrayed in matrix on an insulating substrate, the TFT array substrate including: gate bus lines made from a first metal material; source bus lines made from a second metal material; pixel electrodes made from a third metal material; a clock wiring made from the first metal material; a branch wiring made from the second metal material; and a connection conductor made from the third metal material, the connection conductor connecting the clock wiring and the branch wiring at a connection part in a periphery area, the connection part having a branch-wiring via hole, which exposes the branch wiring which is covered with the connection conductor, and overlaps the clock wiring at least partly in a plane view.
摘要:
An embodiment of the present invention provides a TFT array substrate, in which TFT elements and pixel electrodes being correspondingly connected with the TFT elements are arrayed in matrix on an insulating substrate, the TFT array substrate including: gate bus lines made from a first metal material; source bus lines made from a second metal material; pixel electrodes made from a third metal material; a clock wiring made from the first metal material; a branch wiring made from the second metal material; and a connection conductor made from the third metal material, the connection conductor connecting the clock wiring and the branch wiring at a connection part in a periphery area, the connection part having a branch-wiring via hole, which exposes the branch wiring which is covered with the connection conductor, and overlaps the clock wiring at least partly in a plane view.
摘要:
A signal distribution circuit (3) includes (i) a redundancy TFT element (8) provided so as to have a channel width identical to those of driving TFT elements (7), (ii) first redundancy lines (9a, 9b), (iii) a second redundancy line (10), and (iv) a third redundancy line (11). It is therefore possible to provide a liquid crystal display device including the signal distribution circuit (3) in which, even in a case where a leaking part (a defect part) is generated in any of the driving TFT elements (7), it does not take long to restore the leaking part, and productivity can be improved, the driving TFT elements (7) keeping respective channel widths identical to one another even after the leaking part is restored.
摘要:
Provided is a shift register circuit which includes: first through N-th circuit sections (1a, 1b) (N is an integer equal to or larger than 2) in each of which a plurality of shift register stages (SR1, SR2, . . . , SRn) are connected in cascade; and supply wires (10b, 10c, 10e, 10f). Each of the first through N-th circuit sections (1a, 1b) receives drive signals (CKA1, CKA2, CKB1, CKB2) for driving the shift register stages (SR1, SR2, . . . , SRn) via supply wires (10b, 10c, 10e, 10f) exclusive for the each of the first through N-th circuit sections (1a, 1b).
摘要:
On a display panel 10, a first scanning signal line drive circuit 12 is formed along a side of a display region 11 and a second scanning signal line drive circuit 13 is formed along the opposite side by the same process as pixel circuits. The size of a transistor included, the width of a wiring line, or the like, differs between the first and second scanning signal line drive circuits 12 and 13, and the two scanning signal line drive circuits have different sizes in a lateral direction. By this, the center of the display region matches that of a non-integral-type display panel, ensuring compatibility with the non-integral-type display panel. Moreover, by suitably determining the widths of or spacings between wiring lines included in the two scanning signal line drive circuits, leakage between the wiring lines and breaks in the wiring lines are reduced, improving yield of display panels.
摘要:
On a display panel 10, a first scanning signal line drive circuit 12 is formed along a side of a display region 11 and a second scanning signal line drive circuit 13 is formed along the opposite side by the same process as pixel circuits. The size of a transistor included, the width of a wiring line, or the like, differs between the first and second scanning signal line drive circuits 12 and 13, and the two scanning signal line drive circuits have different sizes in a lateral direction. By this, the center of the display region matches that of a non-integral-type display panel, ensuring compatibility with the non-integral-type display panel. Moreover, by suitably determining the widths of or spacings between wiring lines included in the two scanning signal line drive circuits, leakage between the wiring lines and breaks in the wiring lines are reduced, improving yield of display panels.
摘要:
A signal distribution circuit (3) includes (i) a redundancy TFT element (8) provided so as to have a channel width identical to those of driving TFT elements (7), (ii) first redundancy lines (9a, 9b), (iii) a second redundancy line (10), and (iv) a third redundancy line (11). It is therefore possible to provide a liquid crystal display device including the signal distribution circuit (3) in which, even in a case where a leaking part (a defect part) is generated in any of the driving TFT elements (7), it does not take long to restore the leaking part, and productivity can be improved, the driving TFT elements (7) keeping respective channel widths identical to one another even after the leaking part is restored.