摘要:
A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
摘要:
Changes in tissue stiffness have long been associated with disease. Systems and methods for determining the stiffness of tissues using ultrasonography may include a device for inducing a propagating shear wave in tissue and tracking the speed of propagation, which is directly related to tissue stiffness and density. The speed of a propagating shear wave may be detected by imaging a tissue at a high frame rate and detecting the propagating wave as a perturbance in successive image frames relative to a baseline image of the tissue in an undisturbed state. In some embodiments, sufficiently high frame rates may be achieved by using a ping-based ultrasound imaging technique in which unfocused omni-directional pings are transmitted (in an imaging plane or in a hemisphere) into a region of interest. Receiving echoes of the omnidirectional pings with multiple receive apertures allows for substantially improved lateral resolution.
摘要:
A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate physical apertures of ultrasound arrays. The probe can include separate backing plates configured to secure the ultrasound arrays in predetermined positions and orientations relative to one another. Some embodiments of the probe include flex circuit connected to the ultrasound arrays. In additional embodiments, a flex/PC board comprising flex connectors and an array of terminals is connected to the ultrasound arrays. Algorithms can solve for variations in tissue speed of sound, thus allowing the probe apparatus to be used virtually anywhere in or on the body.
摘要:
Changes in tissue stiffness have long been associated with disease. Systems and methods for determining the stiffness of tissues using ultrasonography may include a device for inducing a propagating shear wave in tissue and tracking the speed of propagation, which is directly related to tissue stiffness and density. The speed of a propagating shear wave may be detected by imaging a tissue at a high frame rate and detecting the propagating wave as a perturbance in successive image frames relative to a baseline image of the tissue in an undisturbed state. In some embodiments, sufficiently high frame rates may be achieved by using a ping-based ultrasound imaging technique in which unfocused omni-directional pings are transmitted (in an imaging plane or in a hemisphere) into a region of interest. Receiving echoes of the omnidirectional pings with multiple receive apertures allows for substantially improved lateral resolution.
摘要:
A Multiple Aperture Ultrasound Imaging system and methods of use are provided with any number of features. In some embodiments, a multi-aperture ultrasound imaging system is configured to transmit and receive ultrasound energy to and from separate physical ultrasound apertures. In some embodiments, a transmit aperture of a multi-aperture ultrasound imaging system is configured to transmit an omni-directional unfocused ultrasound waveform approximating a first point source through a target region. In some embodiments, the ultrasound energy is received with a single receiving aperture. In other embodiments, the ultrasound energy is received with multiple receiving apertures. Algorithms are described that can combine echoes received by one or more receiving apertures to form high resolution ultrasound images. Additional algorithms can solve for variations in tissue speed of sound, thus allowing the ultrasound system to be used virtually anywhere in or on the body.
摘要:
A method of full-field or “ping-based” Doppler ultrasound imaging allows for detection of Doppler signals indicating moving reflectors at any point in an imaging field without the need to predefine range gates. In various embodiments, such whole-field Doppler imaging methods may include transmitting a Doppler ping from a transmit aperture, receiving echoes of the Doppler ping with one or more separate receive apertures, detecting Doppler signals and determining the speed of moving reflectors. In some embodiments, the system also provides the ability to determine the direction of motion by solving a set of simultaneous equations based on echo data received by multiple receive apertures.
摘要:
A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
摘要:
A multiple aperture ultrasound imaging system may be configured to store raw, un-beamformed echo data. Stored echo data may be retrieved and re-beamformed using modified parameters in order to enhance the image or to reveal information that was not visible or not discernible in an original image. Raw echo data may also be transmitted over a network and beamformed by a remote device that is not physically proximate to the probe performing imaging. Such systems may allow physicians or other practitioners to manipulate echo data as though they were imaging the patient directly, even without the patient being present. Many unique diagnostic opportunities are made possible by such systems and methods.
摘要:
A Multiple Aperture Ultrasound Imaging system and methods of use are provided with any number of features. In some embodiments, a multi-aperture ultrasound imaging system is configured to transmit and receive ultrasound energy to and from separate physical ultrasound apertures. In some embodiments, a transmit aperture of a multi-aperture ultrasound imaging system is configured to transmit an omni-directional unfocused ultrasound waveform approximating a first point source through a target region. In some embodiments, the ultrasound energy is received with a single receiving aperture. In other embodiments, the ultrasound energy is received with multiple receiving apertures. Algorithms are described that can combine echoes received by one or more receiving apertures to form high resolution ultrasound images. Additional algorithms can solve for variations in tissue speed of sound, thus allowing the ultrasound system to be used virtually anywhere in or on the body.
摘要:
A multiple aperture ultrasound imaging system may be configured to store raw, un-beamformed echo data. Stored echo data may be retrieved and re-beamformed using modified parameters in order to enhance the image or to reveal information that was not visible or not discernible in an original image. Raw echo data may also be transmitted over a network and beamformed by a remote device that is not physically proximate to the probe performing imaging. Such systems may allow physicians or other practitioners to manipulate echo data as though they were imaging the patient directly, even without the patient being present. Many unique diagnostic opportunities are made possible by such systems and methods.