摘要:
A power controller with overload protection having an alternating current source (AC) connected through power lines (L1, L2) and a pair of power switching devices (FET1, FET2) and a current sensor resistance shunt (SH) in series to a load (LD). A line-derived control power supply circuit (LDS) is connected through one of the power switching devices (FET1) to the lower line (L1, L2) such that the control power supply current does not flow through the shunt (SH) or the load (LD). Close and open commands are applied from a control switch (CSW) through a threshold detector (DT) and a logic circuit (LG1) to operate a latch (LCH) that turns the power switching devices (FET1, FET2) on and off under the clocking control of a zero voltage detector (ZVD) and a zero current detector (ZCD) and the gating control of a minimum current circuit (MCC). An overload circuit (AVC, ITC, TTC) provides instantaneous trip of the latch on rupture current or timed trip of the latch on smaller overloads. Opto-isolated indicators (SS, ST) indicate trip conditions and loss of line voltage conditions as well as whether the load current is above or below a minimum current value which is a current level adequate for operation of the control system.
摘要:
A solid state DC power control system having a single N-type or N-channel or majority carrier solid state switching element (Q1) connected to the high side (L) of the power supply for energizing a ground or neutral (V.sub.o) connected load (LD). A voltage level translation circuit (2,2') supplies a floating regulated control voltage to the switching element (Q1) high enough to maintain it turned on even if the voltage at the low side of the switching element (Q1) rises up to or near the supply voltage thereby allowing use of such N-type switching device (Q1) in the high side (L) of the supply. A zener diode (ZD3) limits the gate(G)-to-source(S) voltage to the proper level. A non-inverting drive circuit (10,12) controlled by a logic level signal input element (Q2) controls connection of the high voltage to the switching (Q1) gate (G). A first version uses a DC-DC converter (CON) and a preferred version uses a voltage multiplier (VM) in the voltage level translation, high voltage, gate supply circuit (2,2').
摘要:
A power MOSFET reversing H-drive system having a first pair of N-channel and P-channel MOSFETs (Q1,Q2) connected in series with a load (LD1,LD2) to a power supply source (T1) and a second like pair of N-channel and P-channel MOSFETs (Q3,Q4) connected in series with the load (LD1,LD2) to the source (T1), each pair having a resistance voltage divider (R1-R2, R5-R6) for providing the P-channel MOSFET (Q1,Q3) with a different voltage level gate signal from the logic level input signal by which the N-channel MOSFET (Q2,Q4) is gated, an overvoltage protector (Z1,Z2) allowing extension of the supply voltage (T1) range under which the system is operable, and the on-state resistances and the flyback current capability of the intrinsic diodes (ID1-ID4) being matched to the size of the load to be driven.
摘要:
A solid state switch (SS) for controlling a load (1) supplied from either an alternating current (AC) or a direct current (DC) power supply line (L1, L2) having a pair of solid state devices (FET1, FET2) for controlling energization of the load and a common control circuit (CC) therefore which includes a diode isolated, capacitive-reactively coupled, line-derived power supply circuit (PSC) for the common control circuit and an opto-isolated logic signal input circuit (ISO) such power supply circuit effectively eliminating the need for transformers or the line.
摘要:
A motor (M) supplied by AC full-wave voltage is controlled by a triac (Q2) under the control of a double-time constant triggering circuit which has a speed setting branch (R3-C2) connected at the triac (Q2) side of the motor (M) and the other time constant branch (R1-C1) connected at the supply side of the motor (M) to provide a feedback function as well as a first time constant. A unidirectional diode (D1) is incorporated in the feedback sensing time constant branch for rendering feedback signals only on alternate half cycles to prevent oscillation and overcompensation of motor speed due to the feedback signal. A soft-start circuit, usable also in half-wave applications, is incorporated in the branch containing adjustable speed setting resistor and comprises a transistor (Q3) having its collector-emitter circuit connected in series with the adjustable resistor (R3). A resistor (R4)-capacitor(C3) time constant circuit is provided to supply time variable current to the base of the transistor (Q3) through a resistor (R5) for causing the transistor (Q3) to gradually conduct, thereby gradually decreasing its resistance and therefore gradually increasing the firing angle of the triac (Q2).
摘要:
A solid state switching circuit for energizing a lamp (L) is connected around a fuse (12) across an AC supply for detecting a voltage differential at the opposite sides of a blown fuse and applying that differential across the control (g) and switching (c) electrodes of the solid state switch (SCR) to render the same conductive. Current limiting resistors (RL1 and RL2) are placed in the ends of wire conductors which are to be connected at opposite sides of the fuse, thereby to limit current flowing in the conductors over the entire length of the conductor, minimizing electrical shock hazard upon damage to the conductor.
摘要:
The present invention is a current sensor employing a magneto resistive sensor having high fidelity of output. This current sensor includes a magnetic flux concentrator substantially encircling the electrical conductor having magnetic sensing, a magnetic device generating a magnetic field component along an axis offset from the principle axis, a magneto resistive device disposed in the magnetic sensing region, a constant current source supplying a predetermined constant current to said magneto resistive device, and a voltage sensing circuit connected to said magneto resistive device for measuring resistance by measuring a difference voltage induced by said constant current. This measured voltage corresponds to the current through the conductor. The magneto resistive device is formed as a Wheatstone bridge having a first and second pair of opposite terminals. The constant current source provides a predetermined constant current whereby the change with temperature in the differential voltage between said second pair of terminals is equal and opposite to the change in voltage of the total bridge resistance with temperature and the change in the bridge offset voltage with temperature.