Delayed processing for over-delivery determination for content delivery system experimentation

    公开(公告)号:US11238488B2

    公开(公告)日:2022-02-01

    申请号:US16824643

    申请日:2020-03-19

    Abstract: A delayed grouping (batch) processing of previous campaign delivery pacing decisions and corresponding outcomes (deliveries) is used to configure a new auction experiment iteration. In the new iteration, a campaign that was previously over-delivered is classified as either (a) over-delivered due to incorrect pacing or (b) over-delivered due to auction experiment design. After the delayed processing, the new auction experiment iteration is conducted with a mitigating action taken on the previously over-delivered campaign if the campaign is classified as (b) over-delivered due to auction experiment design. For example, the mitigating action can include removing the campaign from a subsequent iteration of the experiment, or the experiment can be redesigned. By doing so, the over-delivery caused by the campaign due to the auction experiment design is avoided when performing the new auction experiment iteration.

    DELAYED PROCESSING FOR OVER-DELIVERY DETERMINATION FOR CONTENT DELIVERY SYSTEM EXPERIMENTATION

    公开(公告)号:US20210295374A1

    公开(公告)日:2021-09-23

    申请号:US16824643

    申请日:2020-03-19

    Abstract: A delayed grouping (batch) processing of previous campaign delivery pacing decisions and corresponding outcomes (deliveries) is used to configure a new auction experiment iteration. In the new iteration, a campaign that was previously over-delivered is classified as either (a) over-delivered due to incorrect pacing or (b) over-delivered due to auction experiment design. After the delayed processing, the new auction experiment iteration is conducted with a mitigating action taken on the previously over-delivered campaign if the campaign is classified as (b) over-delivered due to auction experiment design. For example, the mitigating action can include removing the campaign from a subsequent iteration of the experiment, or the experiment can be redesigned. By doing so, the over-delivery caused by the campaign due to the auction experiment design is avoided when performing the new auction experiment iteration.

    LABEL SHIFT DETECTION AND ADJUSTMENT IN PREDICTIVE MODELING

    公开(公告)号:US20210406598A1

    公开(公告)日:2021-12-30

    申请号:US16916706

    申请日:2020-06-30

    Abstract: Techniques for detecting label shift and adjusting training data of predictive models in response are provided. In an embodiment, a first machine-learned model is used to generate a predicted label for each of multiple scoring instances. The first machine-learned model is trained using one or more machine learning techniques based on a plurality of training instances, each of which includes an observed label. In response to detecting a shift in observed labels, for each segment of one or more segments in multiple segments, a portion of training data that corresponds to the segment is identified. For each training instance in a subset of the portion of training data, the training instance is adjusted. The adjusted training instance is added to a final set of training data. The machine learning technique(s) are used to train a second machine-learned model based on the final set of training data.

    Label shift detection and adjustment in predictive modeling

    公开(公告)号:US11599746B2

    公开(公告)日:2023-03-07

    申请号:US16916706

    申请日:2020-06-30

    Abstract: Techniques for detecting label shift and adjusting training data of predictive models in response are provided. In an embodiment, a first machine-learned model is used to generate a predicted label for each of multiple scoring instances. The first machine-learned model is trained using one or more machine learning techniques based on a plurality of training instances, each of which includes an observed label. In response to detecting a shift in observed labels, for each segment of one or more segments in multiple segments, a portion of training data that corresponds to the segment is identified. For each training instance in a subset of the portion of training data, the training instance is adjusted. The adjusted training instance is added to a final set of training data. The machine learning technique(s) are used to train a second machine-learned model based on the final set of training data.

Patent Agency Ranking