Abstract:
An inorganic, dielectric grid polarizer device includes a stack of film layers disposed over a substrate. Each film layer is formed of a material that is both inorganic and dielectric. Adjacent film layers each have different refractive indices. At least one of the film layers is discontinuous to form a form-birefringent layer with an array of parallel ribs having a period less than 400 nm. Another layer, different than the form-birefringent layer, is formed of an optically absorptive material for the ultra-violet spectrum.
Abstract:
A wire grid polarizer comprising on array of parallel, elongated first rib groups disposed over a substrate. Each first rib group can comprise a central first transmissive rib and a pair of first wires including a first wire disposed along each side of the first transmissive rib. A first dielectric material can substantially fill first gaps between each rib group and an adjacent rib group. An array of parallel, elongated second wires can be disposed over the rib groups and the first dielectric material. The first wires or the second wires can be absorptive and the other of the first wires or the second wires can be reflective.
Abstract:
A wire grid polarizer can have a repeated pattern of groups of parallel elongated wires disposed over a substrate. Each group of wires can comprise at least three wires. At least one wire at an interior of each group can be taller than outermost wires of each group. The wires can be a byproduct of an etch reaction.
Abstract:
A wire grid polarizer comprising an array of parallel, elongated first rib groups disposed over a substrate. Each first rib group can comprise a central first transmissive rib and a pair of first wires including a first wire disposed along each side of the first transmissive rib. A first dielectric material can substantially fill first gaps between each rib group and an adjacent rib group. An array of parallel, elongated second wires can be disposed over the rib groups and the first dielectric material. The first wires or the second wires can be absorptive and the other of the first wires or the second wires can be reflective.
Abstract:
An inorganic, dielectric grid polarizer device includes a stack of film layers disposed over a substrate. Each film layer is formed of a material that is both inorganic and dielectric. Adjacent film layers each have different refractive indices. At least one of the film layers is discontinuous to form a form-birefringent layer with an array of parallel ribs having a period less than 400 nm. Another layer, different than the form-birefringent layer, is formed of an optically absorptive material for the ultra-violet spectrum.
Abstract:
A wire grid polarizer comprising on array of parallel, elongated first rib groups disposed over a substrate. Each first rib group can comprise a central first transmissive rib and a pair of first wires including a first wire disposed along each side of the first transmisslve rib. A first dielectric material can substantially fill first gaps between each rib group and an adjacent rib group. An array of parallel, elongated second wires can be disposed over the rib groups and the first dielectric material. The first wires or the second wires can be absorptive and the other of the first wires or the second wires can be reflective.
Abstract:
A wire grid polarizer can have a repeated pattern of groups of parallel elongated wires disposed over a substrate. Each group of wires can comprise at least three wires. At least one wire at an interior of each group can be taller than outermost wires of each group. The wires can be a byproduct of an etch reaction.