Abstract:
In a laminated ceramic electronic component, a side-surface outer electrode includes a first electrode portion including side-surface electrode portions located on first and second side surfaces and wrap-around electrode portions arranged to extend around from the side-surface electrode portions of the first electrode portion to portions of third and fourth side surfaces; and a second electrode portion including side-surface electrode portions located on the third and fourth side surfaces and wrap-around electrode portions arranged to extend around from the side-surface electrode portions of the second electrode portion to portions of the first and second side surfaces. The wrap-around electrode portions of the second electrode portion reach regions covering portions of outermost inner electrodes located at an outermost side portion among inner electrodes, which portions are exposed in the first and second side surfaces.
Abstract:
A multilayer ceramic capacitor includes end-surface external electrodes and side-surface external electrodes. The end-surface external electrodes are respectively provided at end surfaces of a multilayer body and are respectively connected to end-surface connecting internal electrodes. The side-surface external electrodes are respectively provided at the side surfaces of the multilayer body and respectively connected to side-surface connecting internal electrodes. The end-surface connecting internal electrodes each include end surface opposing portion opposing the side-surface connecting internal electrode 15B adjacent in a lamination direction, and an end surface lead-out portion extending from the end surface opposing portion to one of the end-surface external electrodes. The side-surface connecting internal electrodes each include a side surface opposing portion opposing the end-surface connecting internal electrodes adjacent in the lamination direction, and a side surface lead-out portion extending from the side surface opposing portion to one of the side-surface external electrodes.
Abstract:
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrodes alternately laminated therein, and two end surfaces opposing each other in a length direction, and two side surfaces opposing each other in a width direction, and two external electrodes respectively on the two end surfaces of the multilayer body. At least one of two opposed main surfaces of the multilayer ceramic capacitor includes raised portions provided respectively on one side and another side with a middle portion of the main surface interposed therebetween. The raised portions are each raised to become thicker in the lamination direction from the middle portion toward an outer periphery of the main surface.
Abstract:
A capacitor includes an outer electrode extends over first and second main surfaces from exposed portions of inner electrodes on a first side surface and exposed portions of the inner electrodes on a second side surface. An outermost layer of the outer electrode includes a Cu-plated layer.
Abstract:
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrodes alternately laminated therein, and two end surfaces opposing each other in a length direction, and two side surfaces opposing each other in a width direction, and two external electrodes respectively on the two end surfaces of the multilayer body. At least one of two opposed main surfaces of the multilayer ceramic capacitor includes raised portions provided respectively on one side and another side with a middle portion of the main surface interposed therebetween. The raised portions are each raised to become thicker in the lamination direction from the middle portion toward an outer periphery of the main surface.
Abstract:
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrodes alternately stacked on one another, and two external electrodes respectively on two end surfaces of the multilayer body. Each of the dielectric layers includes, at a location coincident with an end portion of a respective one of the internal electrodes, a thick-walled portion thicker in a stacking direction than a portion corresponding in position to a middle portion of a main surface of the multilayer body. When viewed in the stacking direction, positions of some of the thick-walled portions of the dielectric layers are out of alignment with positions of a remainder of the thick-walled portions of the dielectric layers.
Abstract:
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and layered internal electrodes, first and second main surfaces, first and second side surfaces, first and second end surfaces, and an external electrode connected to the internal electrodes and provided on each of the first and second end surfaces. A region where the internal electrodes are superimposed is defined as an effective region, regions respectively located on sides of the first and second end surfaces relative to the effective region are defined as first and second regions, and a bent portion where the dielectric layers and the internal electrodes are bent is located in the first region. In the bent portion, all vertices in the stacking direction are located within a range that extends by about 25 μm to about 35 μm in a length direction from the effective region of the multilayer body.
Abstract:
In a laminated ceramic electronic component, a side-surface outer electrode includes a first electrode portion including side-surface electrode portions located on first and second side surfaces and wrap-around electrode portions arranged to extend around from the side-surface electrode portions of the first electrode portion to portions of third and fourth side surfaces; and a second electrode portion including side-surface electrode portions located on the third and fourth side surfaces and wrap-around electrode portions arranged to extend around from the side-surface electrode portions of the second electrode portion to portions of the first and second side surfaces. The wrap-around electrode portions of the second electrode portion reach regions covering portions of outermost inner electrodes located at an outermost side portion among inner electrodes, which portions are exposed in the first and second side surfaces.
Abstract:
A multilayer ceramic capacitor includes end-surface external electrodes and side-surface external electrodes. The end-surface external electrodes are respectively provided at end surfaces of a multilayer body and are respectively connected to end-surface connecting internal electrodes. The side-surface external electrodes are respectively provided at the side surfaces of the multilayer body and respectively connected to side-surface connecting internal electrodes. The end-surface connecting internal electrodes each include end surface opposing portion opposing the side-surface connecting internal electrode 15B adjacent in a lamination direction, and an end surface lead-out portion extending from the end surface opposing portion to one of the end-surface external electrodes. The side-surface connecting internal electrodes each include a side surface opposing portion opposing the end-surface connecting internal electrodes adjacent in the lamination direction, and a side surface lead-out portion extending from the side surface opposing portion to one of the side-surface external electrodes.
Abstract:
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrode layers that are laminated, first and second main surfaces opposed to each other in a lamination direction, first and second lateral surfaces opposed to each other in a width direction orthogonal or substantially orthogonal to the lamination direction, and first and second end surfaces opposed to each other in a length direction orthogonal or substantially orthogonal to the lamination direction and the width direction. The multilayer body further includes external electrodes that are respectively provided on the first end surface and the second end surface and connected to the internal electrode layers. The internal electrode layers each include first and second regions respectively including different coverages. The first region includes a larger coverage than the second region. The first region is connected to a corresponding one of the external electrodes.