Abstract:
Methods and systems for optical communication in a submarine network are provided. An input signal is received from a terminal at a reconfigurable branching unit (BU), and the input signal is split into at least two parts, with one part being associated with one or more trunk terminals and another part being associated with one or more branch terminals. Each of one or more spectrum channels are selected and individually switched to one of a plurality of paths using at least one wavelength selective switch (WSS), with the at least one WSS being configured to transmit the one or more spectrum channels to their respective target output port and to combine signals switched to a specific port into a wavelength division multiplexing (WDM) signal. Individual spectrum channels are filtered out using at least one wavelength blocker (WB).
Abstract:
A method includes evaluating an optical signal spectrum for estimated filtering parameters of an optical spectral filtering device for shaping optical signal spectrum, determining a feedback for fine tuning the optical spectral filtering device for nonlinearity tolerance enhancement in the optical transmission system, responsive to received optical signal quality in the optical signal spectrum; and using the feedback to adjust said optical spectral filtering device for predetermined shaping and predetermined fiber nonlinearity tolerance in the optical transmission system.
Abstract:
A wavelength division multiplexing system and method featuring a wavelength monitor that is configured to receive a portion of a combined signal of wavelength division multiplexing channels and determine the wavelengths of each channel or the guardband between each channel in the combined signal. The wavelength monitor determines if there is excess laser drift for each channel in the combined signal. If excess laser drift is determined, feedback is sent to the transmitter for the signal with excess laser drift and the signal is adjusted to produce a target wavelength. The wavelength monitor may utilize optical intradyning in order to monitor the wavelengths of each channel in the combined signal.
Abstract:
A method includes evaluating an optical signal spectrum for estimated filtering parameters of an optical spectral filtering device for shaping optical signal spectrum, determining a feedback for fine tuning the optical spectral filtering device for nonlinearity tolerance enhancement in the optical transmission system, responsive to received optical signal quality in the optical signal spectrum; and using the feedback to adjust said optical spectral filtering device for predetermined shaping and predetermined fiber nonlinearity tolerance in the optical transmission system.
Abstract:
A wavelength division multiplexing system and method featuring a wavelength monitor that is configured to receive a portion of a combined signal of wavelength division multiplexing channels and determine the wavelengths of each channel or the guardband between each channel in the combined signal. The wavelength monitor determines if there is excess laser drift for each channel in the combined signal. If excess laser drift is determined, feedback is sent to the transmitter for the signal with excess laser drift and the signal is adjusted to produce a target wavelength. The wavelength monitor may utilize optical intradyning in order to monitor the wavelengths of each channel in the combined signal.
Abstract:
Systems and methods for data transport in optical communications systems, including a transmitter for encoding a received information sequence by constructing an outer and inner quasi cyclic-low-density parity check (QC-LDPC) code. The encoding includes dividing the received information sequence into a plurality of messages of equal length, encoding each of the messages into a codeword to generate a plurality of outer codewords, cascading the plurality of outer codewords to generate a bit sequence, and executing inner encoding to encode each of the plurality of outer codewords into codewords in QC-LDPC inner code. A receiver decodes a received data stream based on the QC-LDPC inner code using two-phase decoding including iteratively performing at least one of inner/outer and outer/inner decoding until a threshold condition is reached.
Abstract:
Methods and systems for optical communication in a submarine network are provided. An input signal is received from a terminal at a reconfigurable branching unit (BU), wherein the BU enables bidirectional transmission between any two terminals, and the input signal is demultiplexed into at least one individual waveband or wavelength using at least one demultiplexer. Each demultiplexed waveband is passed through optical switches, with corresponding optical switches for the same demultiplexed waveband provided for transmission in the reverse direction. Independent per-waveband switching is performed using a demultiplexer-switch-multiplexer (DSM) architecture. Each demultiplexed waveband is multiplexed at each output port using at least one multiplexer to combine signals from different sources, and combined signals are transmitted to a destination terminal.
Abstract:
Methods and systems for optical communication in a submarine network are provided. An input signal is received from a terminal at a reconfigurable branching unit (BU), wherein the BU enables bidirectional transmission between any two terminals, and the input signal is demultiplexed into at least one individual waveband or wavelength using at least one demultiplexer. Each demultiplexed waveband is passed through optical switches, with corresponding optical switches for the same demultiplexed waveband provided for transmission in the reverse direction. Independent per-waveband switching is performed using a demultiplexer-switch-multiplexer (DSM) architecture. Each demultiplexed waveband is multiplexed at each output port using at least one multiplexer to combine signals from different sources, and combined signals are transmitted to a destination terminal.
Abstract:
A method implemented in a transmission apparatus used in an optical fiber communications system for a polarization switched differential quaternary phase-shift keying (DQPSK) signal is disclosed. The method comprises splitting data into two or more data streams, inputting said two or more data streams to 1-bit DQPSK precoders to perform 1-bit DQPSK precoding, and multiplexing inphase outputs of the 1-bit DQPSK precoders to generate a first output; and multiplexing quadrature outputs of the 1-bit DQPSK precoders to generate a second output. Other methods, apparatuses, and systems also are disclosed.
Abstract:
Systems and methods for data transport in optical communications systems, including a transmitter for encoding a received information sequence by constructing an outer and inner quasi cyclic-low-density parity check (QC-LDPC) code. The encoding includes dividing the received information sequence into a plurality of messages of equal length, encoding each of the messages into a codeword to generate a plurality of outer codewords, cascading the plurality of outer codewords to generate a bit sequence, and executing inner encoding to encode each of the plurality of outer codewords into codewords in QC-LDPC inner code. A receiver decodes a received data stream based on the QC-LDPC inner code using two-phase decoding including iteratively performing at least one of inner/outer and outer/inner decoding until a threshold condition is reached.