METHOD FOR SUPERVISED GRAPH SPARSIFICATION
    1.
    发明申请

    公开(公告)号:US20200151563A1

    公开(公告)日:2020-05-14

    申请号:US16675596

    申请日:2019-11-06

    Abstract: A method for employing a supervised graph sparsification (SGS) network to use feedback from subsequent graph learning tasks to guide graph sparsification is presented. The method includes, in a training phase, generating sparsified subgraphs by edge sampling from input training graphs following a learned distribution, feeding the sparsified subgraphs to a prediction/classification component, collecting a predication/classification error, and updating parameters of the learned distribution based on a gradient derived from the predication/classification error. The method further includes, in a testing phase, generating sparsified subgraphs by edge sampling from input testing graphs following the learned distribution, feeding the sparsified subgraphs to the prediction/classification component, and outputting prediction/classification results to a visualization device.

    Deep graph de-noise by differentiable ranking

    公开(公告)号:US11645540B2

    公开(公告)日:2023-05-09

    申请号:US16936600

    申请日:2020-07-23

    Abstract: A method for employing a differentiable ranking based graph sparsification (DRGS) network to use supervision signals from downstream tasks to guide graph sparsification is presented. The method includes, in a training phase, generating node representations by neighborhood aggregation operators, generating sparsified subgraphs by top-k neighbor sampling from a learned neighborhood ranking distribution, feeding the sparsified subgraphs to a task, generating a prediction, and collecting a prediction error to update parameters in the generating and feeding steps to minimize an error, and, in a testing phase, generating node representations by neighborhood aggregation operators related to testing data, generating sparsified subgraphs by top-k neighbor sampling from a learned neighborhood ranking distribution related to the testing data, feeding the sparsified subgraphs related to the testing data to a task, and outputting prediction results to a visualization device.

    DEEP GRAPH DE-NOISE BY DIFFERENTIABLE RANKING

    公开(公告)号:US20210049414A1

    公开(公告)日:2021-02-18

    申请号:US16936600

    申请日:2020-07-23

    Abstract: A method for employing a differentiable ranking based graph sparsification (DRGS) network to use supervision signals from downstream tasks to guide graph sparsification is presented. The method includes, in a training phase, generating node representations by neighborhood aggregation operators, generating sparsified subgraphs by top-k neighbor sampling from a learned neighborhood ranking distribution, feeding the sparsified subgraphs to a task, generating a prediction, and collecting a prediction error to update parameters in the generating and feeding steps to minimize an error, and, in a testing phase, generating node representations by neighborhood aggregation operators related to testing data, generating sparsified subgraphs by top-k neighbor sampling from a learned neighborhood ranking distribution related to the testing data, feeding the sparsified subgraphs related to the testing data to a task, and outputting prediction results to a visualization device.

    Method for supervised graph sparsification

    公开(公告)号:US11610114B2

    公开(公告)日:2023-03-21

    申请号:US16675596

    申请日:2019-11-06

    Abstract: A method for employing a supervised graph sparsification (SGS) network to use feedback from subsequent graph learning tasks to guide graph sparsification is presented. The method includes, in a training phase, generating sparsified subgraphs by edge sampling from input training graphs following a learned distribution, feeding the sparsified subgraphs to a prediction/classification component, collecting a predication/classification error, and updating parameters of the learned distribution based on a gradient derived from the predication/classification error. The method further includes, in a testing phase, generating sparsified subgraphs by edge sampling from input testing graphs following the learned distribution, feeding the sparsified subgraphs to the prediction/classification component, and outputting prediction/classification results to a visualization device.

Patent Agency Ranking