Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
This technology identifies one or more nodes with a failure, designates the identified one or more nodes as ineligible to service any I/O operation, and disables I/O ports of the identified one or more nodes. Another one or more nodes are selected to service any I/O operation of the identified one or more nodes based on a stored failover policy. Any of the I/O operations are directed to the selected another one or more nodes for servicing and then routing of any of the serviced I/O operations via a switch to the identified one or more nodes to execute any of the routed I/O operations with a storage device. An identification is made when the identified one or more nodes is repaired. The designation as ineligible is removed and one or more I/O ports of the identified one or more nodes are enabled when the repair is identified.
Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
A system and method for storage of a core dump on a remotely connected storage device in a cluster environment is provided. In response to the need to perform a core dump operation, determination is made whether a local storage disk is available. If no local spare disk is available, other nodes in the cluster are queried via a cluster fabric protocol to identify a spare disk connected to another node of the cluster. The core dump is then performed via a cluster fabric switching network from a failed node to a node hosting a free spare disk.