Abstract:
The present disclosure relates to enhancing sludge dewaterability by adding an alpha-amylase and protease to the sludge prior to conventional conditioning and dewatering operations.
Abstract:
The present invention relates to processes for modifying a filler material comprising treating the filler material with a composition comprising a xyloglucan endotransglycosylase and (a) a polymeric xyloglucan and a functionalized xyloglucan oligomer comprising a chemical group; (b) a polymeric xyloglucan functionalized with a chemical group and a functionalized xyloglucan oligomer comprising a chemical group; (c) a polymeric xyloglucan functionalized with a chemical group and a xyloglucan oligomer; (d) a polymeric xyloglucan and a xyloglucan oligomer; (e) a a polymeric xyloglucan functionalized with a chemical group; (f) a polymeric xyloglucan; (g) a functionalized xyloglucan oligomer comprising a chemical group; or (h) a xyloglucan oligomer; or a composition of (a-h) without a xyloglucan endotransglycosylase, wherein the modified filler material possesses an improved property compared to the unmodified filler material. The present invention also relates to modified filler materials and modified filler materials obtained by such processes.
Abstract:
This invention relates to methods to reduce the levels of contaminants in effluent produced in industrial operations, e.g., refinery operations. In particular, the invention relates to method to reduce the level of organic contaminants in industrial effluent wherein said effluent lacks sufficient dissolved oxygen to support enzymatically-catalyzed removal of organic contaminants comprising adding to the effluent one or more enzymes in an amount effective to reduce the level of organic contaminants in said effluent, wherein said enzymes require oxygen for enzymatic activity; and adding an in situ source of dissolved oxygen.