Abstract:
A light-emitting component a first layer stack configured to generate light, at least one additional layer stack configured to generate light, where each of the first layer stack and the at least one additional layer stack are separately drivable from one another and where an auxiliary structure is arranged between the first layer stacks and the at least one additional layer stacks.
Abstract:
The invention relates to an optoelectronic component, the optoelectronic component comprises a light-emitting layer stack, and an electrothermal protection element, which is connected to the layer stack in the component and has a temperature-dependent resistor.
Abstract:
An organic light-emitting diode includes at least two segments arranged adjacent to one another, a scattering layer that at least partially scatters the light generated in each of the segments, and at least one separating region located in the scattering layer, wherein the separating region has a transmittance for light generated in the segments of at most 20%, the separating region, when viewed in a plan view, is arranged in a transitional region between adjacent segments such that within the scattering layer propagation of light between the segments is suppressed, the segments include organic layer sequences each located between a first electrode and a second electrode, the segments are distant from one another in a direction parallel to the main directions of extension, and the scattering layer directly adjoins the first electrode which is light-transmitting and directly adjoins a transparent layer on a side remote from the first electrode.
Abstract:
An optoelectronic component may include a first organic functional layer structure, a second organic functional layer structure, and a charge generating layer structure between the first organic functional layer structure and the second organic functional layer structure. The charge generating layer structure includes a first electron-conducting charge generating layer, and a second electron-conducting charge generating layer. The second electron-conducting charge generating layer is formed from a single substance, and the substance of the first electron-conducting charge generating layer is a substance selected from the group of substances consisting of: HAT-CN, Cu(I)pFBz, NDP-2, NDP-9, Bi(III)pFBz, F16CuPc.
Abstract:
A light-emitting component a first layer stack configured to generate light, at least one additional layer stack configured to generate light, where each of the first layer stack and the at least one additional layer stack are separately drivable from one another and where an auxiliary structure is arranged between the first layer stacks and the at least one additional layer stacks.
Abstract:
The invention relates to an organic light-emitting component (100), comprising a functional layer stack (9) between two electrodes (1, 8), wherein the functional layer stack (9) has at least two organic light-emitting layers (2, 7) and at least one charge carrier generation zone (3), which is arranged between the two organic light-emitting layers (2, 7), wherein the charge carrier generation zone (3) comprises an electron-conducting organic layer (31) and a hole-conducting organic layer (32), between which an intermediate region (4) is arranged, wherein the intermediate region (4) comprises at least one organic intermediate layer (6) which has a first charge carrier transport mechanism and an inorganic intermediate layer (5) which has a second charge carrier transport mechanism, wherein the inorganic intermediate layer (5) is arranged between the organic intermediate layer (6) and the electron-conducting organic layer (31), and wherein the first charge carrier transport mechanism is at least partially different to the second charge carrier transport mechanism.
Abstract:
An organic electronic component and a method for making an organic electronic component are disclosed. In an embodiment the component includes an anode, an active layer arranged above the anode, an electron injection layer arranged above the active layer and a cathode arranged above the electron injection layer. The electron injection layer further comprises a first organic layer comprising a first organic matrix material, a second organic layer comprising a second organic matrix material and a metallic layer, wherein the first organic matrix material has a higher electron conductivity than the second organic matrix material.
Abstract:
A light-emitting component is disclosed. In an embodiment the light-emitting device includes a first layer stack for generating light, at least one additional layer stack for generating light, wherein each of the first layer stack and the at least one additional layer stack are separately drivable from one another and an auxiliary structure arranged between the first layer stacks and the at least one additional layer stacks.
Abstract:
A light-emitting component is disclosed. In an embodiment the light-emitting device includes a first layer stack for generating light, at least one additional layer stack for generating light, wherein each of the first layer stack and the at least one additional layer stack are separately drivable from one another and an auxiliary structure arranged between the first layer stacks and the at least one additional layer stacks.
Abstract:
An organic light-emitting device and a method for producing an organic light emitting device are disclosed. In an embodiment the device includes a substrate and at least one layer sequence arranged on the substrate and suitable for generating electromagnetic radiation. The at least one layer sequence includes at least one first electrode surface arranged on the substrate, at least one second electrode surface arranged on the first electrode surface and an organic functional layer stack having organic functional layers between the first electrode surface and the second electrode surface. The organic functional layer stack includes at least one organic light-emitting layer, wherein the at least one organic light-emitting layer is configured to emit light, wherein the organic functional layer stack includes at least one inhomogeneity layer, and wherein a thickness of the at least one inhomogeneity layer varies in a lateral direction.