Abstract:
A method of avoiding unnecessary safety brake actuation in an elevator system. The method includes determining whether a true overspeed or overacceleration condition of an elevator car is present. The method also includes activating the electronic safety actuator if a true overspeed or overacceleration condition of the elevator car.
Abstract:
An illustrative example elevator governor includes at least one flyweight configured to move a first distance between an initial position corresponding to a zero speed condition and an activation position corresponding to an elevator speed that reaches a predefined threshold. A biasing member biases the at least one flyweight toward the initial position. The biasing member is configured to allow the at least one flyweight to reach the activation position when the elevator speed reaches the predefined threshold. A flyweight position member sets a rest position of the at least one flyweight in the zero speed condition that is between the initial position and the activation position. A range of motion of the at least one flyweight is limited to a second, shorter distance between the rest position and the activation position.
Abstract:
An illustrative example elevator system includes an elevator car, a machine that selectively causes movement of the elevator car, and a drive that controls the machine to control movement of the elevator car at an intended elevator car speed. The drive is configured to use information regarding operation of the machine to determine whether an abnormal passenger behavior (APB) condition exists that affects movement of the elevator car. The drive is configured to alter the elevator car speed when the APB condition exists.
Abstract:
The present invention provides a remote trigger device, a speed limiter assembly having the same and an elevator. The remote trigger device for the speed limiter assembly comprises: an actuator; and a rotating component, the rotating component being capable of rotating around a rotating axis in a rotating plane, the rotating component being actuated by the actuator to rotate from an idle position to a working position. During rotation of the speed limiter assembly, at the idle position, the rotating component is kept separated from an over-speed locking mechanism of the speed limiter assembly, and at the working position, the rotating component toggles a trigger member of the over-speed locking mechanism of the speed limiter assembly to trigger the speed limiter assembly. The structure of the remote trigger device according to the present invention is compact and simple.
Abstract:
An illustrative example elevator governor includes at least one flyweight configured to move a first distance between an initial position corresponding to a zero speed condition and an activation position corresponding to an elevator speed that reaches a predefined threshold. A biasing member biases the at least one flyweight toward the initial position. The biasing member is configured to allow the at least one flyweight to reach the activation position when the elevator speed reaches the predefined threshold. A flyweight position member sets a rest position of the at least one flyweight in the zero speed condition that is between the initial position and the activation position. A range of motion of the at least one flyweight is limited to a second, shorter distance between the rest position and the activation position.
Abstract:
An elevator governor rotor comprises a central axis and a plurality of pairs of lobes. Each pair of lobes comprises an inner lobe and an outer lobe.
Abstract:
According to one embodiment, an elevator car collision protection system is provided. The collision protection system comprising: a first antenna configured to be worn by a person entering a hoistway; a first trio of transceivers located a first selected distance away from a first impact wall of the hoistway, the first trio of transceivers being configured to detect a first clearance between an elevator car within the hoistway and the first trio of transceivers and a second clearance between the first antenna and the first trio of transceivers; and an alarm configured to activate when a collision risk level exceeds a selected risk level, wherein the collision risk level is determined in response to the first clearance and the second clearance.
Abstract:
A braking device is operable to aid in braking a hoisted object relative to a guide member. The braking device includes a mounting structure connected to the hoisted object, and first and second brake pads positioned on the mounting structure on opposing sides of a passageway through which the guide member extends. The first and second brake pads each include a contact surface that is operable to frictionally engage the guide member. The second brake pad engages the mounting structure in a manner that enables the second brake pad to move relative to the mounting structure between a non-braking position and a braking position. The braking device includes a brake initiator that is selectively operable to initiate movement of the second brake pad from the non-braking position toward the braking position by selectively actuating an actuatable portion of the brake initiator from a non-deployed position to a deployed position.
Abstract:
A method of remotely tripping an overspeed assembly of a governor assembly includes generating a signal to indicate remote trip, applying power to an actuator, contacting a tripping lever with a movable member operably coupled to the actuator to rotate the tripping lever out of contact with an adjacent swing jaw, and biasing the swing jaw into contact with a ratchet disc capable of limited rotation in response to the tripping lever.
Abstract:
A damping device for damping movement of a parked car in an elevator system includes a base plate and at least one damping assembly connected to the base plate. The damping assembly includes a flange extending from the base plate, a support member arranged at a distance from the flange, and at least one damping mechanism having a first end connected to the flange and a second end connected to the support member. The at least one damping assembly restricts movement of the support member toward the flange.