Abstract:
A headset controller takes a first touch sensor, a second touch sensor, a first pressure sensor, and a second pressure sensor as a control medium for users. The headset controller can generate four different output instructions by the users touching or pressing the operating interface. The headset controller integrates various sensing methods to generate the needed output instructions.
Abstract:
There is provided a portable electronic device including a backlight module, an ambient light sensor, a proximity sensor and a processing unit. The backlight module illuminates with backlight brightness. The ambient light sensor is configured to detect ambient light intensity. The proximity sensor is configured to detect an object. The processing unit is configured to activate the proximity sensor when the ambient light intensity detected by the ambient light sensor is lower than a predetermined value or decreases more than a predetermined range, and to maintain or reduce the backlight brightness according to a detection result of the proximity sensor. There is further provided an automatic detection method.
Abstract:
A headset controller takes a first touch sensor, a second touch sensor, a first pressure sensor, and a second pressure sensor as a control medium for users. The headset controller can generate four different output instructions by the users touching or pressing the operating interface. The headset controller integrates various sensing methods to generate the needed output instructions.
Abstract:
There is provided a portable electronic device including a backlight module, an ambient light sensor, a proximity sensor and a processing unit. The backlight module illuminates with backlight brightness. The ambient light sensor is configured to detect ambient light intensity. The proximity sensor is configured to detect an object. The processing unit is configured to activate the proximity sensor when the ambient light intensity detected by the ambient light sensor is lower than a predetermined value or decreases more than a predetermined range, and to maintain or reduce the backlight brightness according to a detection result of the proximity sensor. There is further provided an automatic detection method.
Abstract:
A distance measurement device including a pixel array and a cover layer is provided. The cover layer is covered on the pixel array. The cover layer includes a first cover pattern covering on a first area of a plurality of first pixels and a second cover pattern covering on a second area of a plurality of second pixels. The first area and the second area are rectangles of mirror symmetry along a first direction.
Abstract:
An optical sensor includes at least two optical sensing pixels and at least two different grating elements. These grating elements are disposed above these optical sensing pixels correspondingly.
Abstract:
A device for determining a gesture includes a light emitting unit, an image sensing device and a processing circuit. The light emitting unit emits a light beam. The image sensing device captures an image of a hand reflecting the light beam. The processing circuit obtains the image and determines a gesture of the hand by performing an operation on the image; wherein the operation includes: selecting pixels in the image having a brightness greater than or equal to a brightness threshold; dividing the selected pixels; and determining the gesture of the hand according to a number of group of divided pixels. A method for determining a gesture and an operation method of the aforementioned device are also provided.
Abstract:
An operation method of an optical touch device includes: emitting, by a light emitting unit, a light beam to illuminate an object; capturing, by an image sensing device, an image of the object reflecting the light beam; selecting all pixels in the image having a brightness greater than or equal to a brightness threshold; sorting the selected pixels along a first coordinate axis of the image, a second coordinate axis of the image or based a pixel brightness; selecting the top first predetermined ratio of pixels from the sorted pixels as an object image of the object; and calculating a gravity center of the object image according to positions of the top first predetermined ratio of pixels or according to the positions of the top first predetermined ratio of pixels with a weight of pixel brightness. An optical touch device is also provided.
Abstract:
A method for identifying an object, an optical sensing apparatus and a system are provided. A controller of the system drives multiple light sources of the optical sensing apparatus to emit the multiple light beams with different beam angles, controls a light sensor to sense the lights reflected by the object, and performs the method for identifying the object. In the method, the light sensor is used to sense a first light emitted by a first light source with a first beam angle reflected by the object, and sense an intensity of the reflected first light. The light sensor is also used to sense a second light emitted by a second light source with a second beam angle reflected by the object and sense another intensity of the reflected second light. Therefore, the object can be identified by integrating information of the intensities obtained by the light sensor.
Abstract:
A method for identifying an object, an optical sensing apparatus and a system are provided. A controller of the system drives multiple light sources of the optical sensing apparatus to emit the multiple light beams with different beam angles, controls a light sensor to sense the lights reflected by the object, and performs the method for identifying the object. In the method, the light sensor is used to sense a first light emitted by a first light source with a first beam angle reflected by the object, and sense an intensity of the reflected first light. The light sensor is also used to sense a second light emitted by a second light source with a second beam angle reflected by the object and sense another intensity of the reflected second light. Therefore, the object can be identified by integrating information of the intensities obtained by the light sensor.