摘要:
Systems, devices and methods with improved wave front sensing and detection capabilities are described. One example wave front sensor includes a lenslet array that receives an incoming wave front, and a mask that is positioned at a focal plane of the lenslet array to receive and filter a Fourier transformed wave front that is produced by the first lenslet array at the focal plane. Each section of the mask receives light from a corresponding lens of the lenslet array and is configured to produce a reference wave front and to allow a portion of the Fourier transformed wave front to be transmitted or reflected. The wave front sensor also includes a sensor array having a plurality of light sensitive detectors that is positioned to receive the two wave fronts and to detect an intensity value representative of a phase of the incoming wave front.
摘要:
An apparatus and a method for correctly measuring a phase of an extreme ultraviolet (EUV) mask and a method of fabricating an EUV mask including the method are described. The apparatus for measuring the phase of the EUV mask includes an EUV light source configured to generate and output EUV light, at least one mirror configured to reflect the EUV light as reflected EUV light incident on an EUV mask to be measured, a mask stage on which the EUV mask is arranged, a detector configured to receive the EUV light reflected from the EUV mask, to obtain a two-dimensional (2D) image, and to measure reflectivity and diffraction efficiency of the EUV mask, and a processor configured to determine a phase of the EUV mask by using the reflectivity and diffraction efficiency of the EUV mask.
摘要:
Various embodiments of the teachings herein include a method for determining a radiation intensity and/or a wavelength of a process light, wherein the melt pool underlying the process light can be generated by irradiating a metal material with an energy beam along a path, wherein the energy beam can be moved in accordance with a power profile along the path. The method may include:
providing a power profile for a section of the path as an input variable for a machine learning model; training the model using historical and/or synthetic power profiles and associated historical or synthetic radiation intensities and/or wavelengths of the process light for the metal material; and determining the radiation intensity and/or the wavelength of the process light as an output variable of the model.
摘要:
There are provided systems and methods for digital optical aberration correction and spectral imaging. An optical system may comprise an optical imaging unit, to form an optical image near an image plane of the optical system; a wavefront imaging sensor unit located near the image plane, to provide raw digital data on an optical field and image output near the image plane; and a control unit for processing the raw digital data and the image output to provide deblurred image output, wherein the control unit comprises a storage unit that stores instructions and a processing unit to execute the instructions to receive the image input and the raw digital data of the optical field impinging on the wavefront imaging sensor and generate a deblurred image based on an analysis of the optical mutual coherence function at the imaging plane.
摘要:
An optical wavelength detecting device, the device including: a polarizer configured to transform an incident light into a polarized light; a detecting element configured to receive the polarized light and form a temperature difference or a potential difference between two points of the detecting element, wherein the detecting element includes a carbon nanotube structure including a plurality of carbon nanotubes oriented along the same direction, and angles between a polarizing direction of the polarized light and an oriented direction of the plurality of carbon nanotubes is adjustable; a measuring device electrically connected to the detecting element and configured to measure the temperature difference or the potential difference; a data processor electrically connected to the measuring device and configured to obtain the optical wavelength by calculating and analyzing the temperature difference or the potential difference.
摘要:
An adaptive optics system includes a spatial light modulator configured to spatially modulate a phase of an optical image incident on a modulation surface including N two-dimensionally arranged regions and a wavefront sensor including a lens array having N two-dimensionally arranged lenses corresponding to the N regions and an optical detection element for detecting a light intensity distribution including K converging spots formed by the lens array and configured to receive the optical image after the modulation from the spatial light modulator, wherein a correspondence relation between the region of the spatial light modulator and the converging spot formed in the wavefront sensor is specified.
摘要:
A wavefront sensing pixel is provided. The wavefront sensing pixel includes a low-pass filter filtering a charge signal from a photodetector and outputting a control signal when low-frequency signals are detected in the charge signal, and a control device to control flow of the charge signal past the control device based on whether a low-frequency signal is detected in the charge signal. The wavefront sensing pixel further includes a low-frequency signal path that receives a flow of signals that flow past the control device, and a high-frequency signal path independent of the low-pass filter and the control device, the high-frequency signal path receiving high-frequency signals included in the charge signal.
摘要:
In an optical wavefront measuring device, a SLM generates a plurality of different through holes, so that light beams pass through the through holes and form a plurality of light patterns. The distance between an infinite objective lens module and a test lens is adjusted so that the light patterns enter into a wavefront sensor in the form of approximately parallel light after passing through the infinite objective lens module and the test lens. The wavefront sensor captures a plurality of WS images which do not have a fold-over phenomenon according to the light patterns. Computer by using an algorithm to obtain wavefront change information, and then reconstructs a wavefront on the basis of the wavefront change information.
摘要:
Metrology methods, modules and targets are provided, for measuring tilted device designs. The methods analyze and optimize target design with respect to the relation of the Zernike sensitivity of pattern placement errors (PPEs) between target candidates and device designs. Monte Carlo methods may be applied to enhance the robustness of the selected target candidates to variation in lens aberration and/or in device designs. Moreover, considerations are provided for modifying target parameters judiciously with respect to the Zernike sensitivities to improve metrology measurement quality and reduce inaccuracies.
摘要:
An adaptive optics system includes a spatial light modulator configured to spatially modulate a phase of an optical image incident on a modulation surface and a wavefront sensor including a lens array having a plurality of two-dimensionally arranged lenses and an optical detection element for detecting a light intensity distribution including converging spots formed by the lens array and configured to receive the optical image after the modulation from the spatial light modulator, and compensates for wavefront distribution by controlling a phase pattern displayed in the spatial light modulator based on a wavefront shape of the optical image obtained from the light intensity distribution, wherein an amount of angular displacement between the modulation surface and the wavefront sensor is calculated.