Abstract:
A flame-retardant electric cable having a core comprising at least one electric conductor, an electrically insulating coating and an outermost layer made from a flame-retardant polymer composition comprising:
a) polyvinylchloride (PVC) as base polymer; b) 25-45% (70-110 phr) by weight of at least one metal hydroxide; c) 0.4-3% (about 1-8 phr) by weight of an optionally surface-treated montmorillonite having average particle dimensions of from 5 to 20 μm; d) 1.2-3% (about 3-8 phr) by weight of antimony trioxide; wherein the sum of the amount of montmorillonite and antimony trioxide is at least 5.5 phr and wherein the antimony trioxide and montmorillonite are in a ratio of from 1:0.1 to 1:2.5.
Abstract:
A process for recovering wastes of a polymeric composition including at least one peroxide-curable polymer and at least one peroxidic crosslinking agent, which includes compounding the wastes with at least one antioxidant agent suitable for sulfur-vulcanized elastomeric compositions, at a temperature lower than the decomposition temperature of the at least one peroxide crosslinking agent. These antioxidant agents are effective to quench the peroxide crosslinking agent, so as to avoid any substantial crosslinking of the composition during processing of the same. The compounding of the polymeric wastes with the antioxidant agent is carried out at a temperature lower than the decomposition temperature of the peroxide crosslinking agent, so as to avoid any premature activation of the crosslinking agent. The process is particularly suitable for compositions based on elastomeric polyolefins, more preferably for elastomeric ethylene copolymers such as ethylene-propylene copolymers (EPR) and ethylene-propylene-diene terpolymers (EPDM), which can be processed at relatively low temperatures, much lower than the decomposition temperatures of the most common peroxide crosslinking agents.
Abstract:
A flame-retardant electric cable has a core including at least one electric conductor, an electrically insulating coating and an outermost layer made from a substantially thermoplastic, low smoke zero halogen flame-retardant polymer composition. The composition includes a polymeric base made of at least one polyethylene homopolymer or copolymer having a density of 0.94 g/cm3 at most. The composition further includes 60-64% by weight of a metal hydroxide, at least 2% by weight of an ammonium coated montmorillonite having average particle dimensions of from 5 to 20 μm, and a polysiloxane.
Abstract:
A process for recovering wastes of a polymeric composition including at least one peroxide-curable polymer and at least one peroxidic crosslinking agent, which includes compounding the wastes with at least one antioxidant agent suitable for sulfur-vulcanized elastomeric compositions, at a temperature lower than the decomposition temperature of the at least one peroxide crosslinking agent. The compounding of the polymeric wastes with the antioxidant agent is carried out at a temperature lower than the decomposition temperature of the peroxide crosslinking agent, so as to avoid any premature activation of the crosslinking agent. The process is particularly suitable for compositions based on elastomeric polyolefins, more preferably for elastomeric ethylene copolymers such as ethylene-propylene copolymers (EPR) and ethylene-propylene-diene terpolymers (EPDM), which can be processed at relatively low temperatures, much lower than the decomposition temperatures of the most common peroxide crosslinking agents.
Abstract:
A flame-retardant electric cable having a core comprising at least one electric conductor, an electrically insulating coating and an outermost layer made from a flame-retardant polymer composition comprising: a) polyvinylchloride (PVC) as base polymer; b) 25-45% (70-110 phr) by weight of at least one metal hydroxide; c) 0.4-3% (about 1-8 phr) by weight of an optionally surface-treated montmorillonite having average particle dimensions of from 5 to 20 μm; d) 1.2-3% (about 3-8 phr) by weight of antimony trioxide; wherein the sum of the amount of montmorillonite and antimony trioxide is at least 5.5 phr and wherein the antimony trioxide and montmorillonite are in a ratio of from 1:0.1 to 1:2.5.
Abstract:
A flame-retardant electric cable has a core including an electric conductor and an electrically insulating layer. The electrically insulating layer includes a flame-retardant polyolefin-based composition which includes, as base polymer, a mixture of at least two polyolefin homopolymers and/or copolymer wherein at least one is a low-density polyethylene copolymer having a density lower than 0.915 g/cm3. The flame-retardant polyolefin-based composition also includes calcinated kaolin in an amount greater than 3 phr, a metal hydroxide in an amount greater than 10 phr, and an alkyl or alkenyl alkoxy siloxane. The alkyl or alkenyl alkoxy siloxane is in an amount ratio of from 1:25 to 1:50 with respect to the sum of the amounts of calcinated kaolin and of the metal hydroxide.