Abstract:
The present invention generally relates to systems and methods for evaluating and/or predicting thermodynamic behavior within a particular area, and more specifically, to systems and methods which, at least in some embodiments, use computational fluid dynamics to compute and/or predict thermodynamic behavior of data centers and the like. Embodiments of the present invention include the ability to validate the calibration of computational models in order to improve output accuracy.
Abstract:
A data center physical infrastructure management system has a cabinet having rack spaces and a sensor. A data communication system transmits signals to a management database. Personal or automated intervention is determined algorithmically by a data processor. A human interface for the data center management system is provided. Removable electronic assets contained in the rack spaces each have an identifier tag. An identifier tag reader is installed on the cabinet body. A door sensor provides a signal responsive to whether a cabinet door is closed, open, locked, or unlocked, Also, a secure contact arrangement has a base terminal formed of electrically conductive material, and first and second electrically conductive elements. A resilient non-conductive element is interposed between the first and second electrically conductive elements, and a compression element compresses the resilient non-conductive element to cause the first and second electrically conductive elements to communicate with one another.
Abstract:
A data center physical infrastructure management system has a cabinet having rack spaces and a sensor. A data communication system transmits signals to a management database. Personal or automated intervention is determined algorithmically by a data processor. A human interface for the data center management system is provided. Removable electronic assets contained in the rack spaces each have an identifier tag. An identifier tag reader is installed on the cabinet body. A door sensor provides a signal responsive to whether a cabinet door is closed, open, locked, or unlocked. Also, a secure contact arrangement has a base terminal formed of electrically conductive material, and first and second electrically conductive elements. A resilient non-conductive element is interposed between the first and second electrically conductive elements, and a compression element compresses the resilient non-conductive element to cause the first and second electrically conductive elements to communicate with one another.
Abstract:
A data center physical infrastructure management system has a cabinet having rack spaces and a sensor. A data communication system transmits signals to a management database. Personal or automated intervention is determined algorithmically by a data processor. A human interface for the data center management system is provided. Removable electronic assets contained in the rack spaces each have an identifier tag. An identifier tag reader is installed on the cabinet body. A door sensor provides a signal responsive to whether a cabinet door is closed, open, locked, or unlocked. Also, a secure contact arrangement has a base terminal formed of electrically conductive material, and first and second electrically conductive elements. A resilient non-conductive element is interposed between the first and second electrically conductive elements, and a compression element compresses the resilient non-conductive element to cause the first and second electrically conductive elements to communicate with one another.
Abstract:
The present invention relates to the field of facility management, and more specifically, to methods and systems for datacenter capacity monitoring and planning. Embodiments of the present invention utilize various environmental variables to help execute and plan move/add/change work orders within a datacenter while remaining within desired guard bands.