Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.
Abstract:
A data center physical infrastructure management system has a cabinet having rack spaces and a sensor. A data communication system transmits signals to a management database. Personal or automated intervention is determined algorithmically by a data processor. A human interface for the data center management system is provided. Removable electronic assets contained in the rack spaces each have an identifier tag. An identifier tag reader is installed on the cabinet body. A door sensor provides a signal responsive to whether a cabinet door is closed, open, locked, or unlocked. Also, a secure contact arrangement has a base terminal formed of electrically conductive material, and first and second electrically conductive elements. A resilient non-conductive element is interposed between the first and second electrically conductive elements, and a compression element compresses the resilient non-conductive element to cause the first and second electrically conductive elements to communicate with one another.
Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.
Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.
Abstract:
A data center physical infrastructure management system has a cabinet having rack spaces and a sensor. A data communication system transmits signals to a management database. Personal or automated intervention is determined algorithmically by a data processor. A human interface for the data center management system is provided. Removable electronic assets contained in the rack spaces each have an identifier tag. An identifier tag reader is installed on the cabinet body. A door sensor provides a signal responsive to whether a cabinet door is closed, open, locked, or unlocked, Also, a secure contact arrangement has a base terminal formed of electrically conductive material, and first and second electrically conductive elements. A resilient non-conductive element is interposed between the first and second electrically conductive elements, and a compression element compresses the resilient non-conductive element to cause the first and second electrically conductive elements to communicate with one another.
Abstract:
A data center physical infrastructure management system has a cabinet having rack spaces and a sensor. A data communication system transmits signals to a management database. Personal or automated intervention is determined algorithmically by a data processor. A human interface for the data center management system is provided. Removable electronic assets contained in the rack spaces each have an identifier tag. An identifier tag reader is installed on the cabinet body. A door sensor provides a signal responsive to whether a cabinet door is closed, open, locked, or unlocked. Also, a secure contact arrangement has a base terminal formed of electrically conductive material, and first and second electrically conductive elements. A resilient non-conductive element is interposed between the first and second electrically conductive elements, and a compression element compresses the resilient non-conductive element to cause the first and second electrically conductive elements to communicate with one another.
Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.
Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.
Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.