Abstract:
An approach is disclosed for synchronization of frequency and/or phase in a full duplex network. The method may comprise sending a timing beacon over a single full duplex radio channel from a timing master to a timing slave; receiving the timing beacon over the single full duplex radio channel at the timing slave; sending a retransmitted beacon over the single full duplex radio channel from the timing slave to the timing master; and sending a delta of the timing beacon and the retransmitted beacon from the timing master to the timing slave. The beacon may contain a timestamp. The retransmitted beacon may include a delay calculation. A hybrid analog/digital self-interference cancellation system may be used at the timing master or the timing slave. The method may also include simultaneously sending and receiving the synchronization information over the single full duplex radio channel.
Abstract:
A system is disclosed for providing multicast services to mobile devices, comprising a first network node providing a radio access network to a mobile device; a second network node coupled to the first network node and providing backhaul routing for the first network node; a controller node, coupled to both the first and the second network node and to a multicast packet gateway, wherein the controller node provides a virtualized interface of a single network node to the multicast packet gateway, thereby virtualizing the first and second network nodes to the multicast packet gateway such that the multicast packet gateway may be enabled to send a multicast data stream to the first and the second network nodes via the controller node.
Abstract:
A heuristic approach to configuration and/or planning for wireless networks is disclosed herein. In one embodiment, statistics relating to mobile device cell usage are collected and monitored. The statistics may include UE measurements (RSRP/RSRQ), UE location, number of connection requests, duration of connectivity, average traffic load associated with the users, channel utilization, and other statistics. Based on statistical analysis of the data collected, neural network analysis, data fitting, or other analysis, adjustments to cell coverage parameters such as handover thresholds, inactivity timer values, contention window size, inter-frame duration, transmit power, DRX cycle duration, or other parameters may be identified.
Abstract:
A heuristic approach to configuration and/or planning for wireless networks is disclosed herein. In one embodiment, statistics relating to mobile device cell usage are collected and monitored. The statistics may include UE measurements (RSRP/RSRQ), UE location, number of connection requests, duration of connectivity, average traffic load associated with the users, channel utilization, and other statistics. Based on statistical analysis of the data collected, neural network analysis, data fitting, or other analysis, adjustments to cell coverage parameters such as handover thresholds, inactivity timer values, contention window size, inter-frame duration, transmit power, DRX cycle duration, or other parameters may be identified.
Abstract:
A system is disclosed for providing multicast services to mobile devices, comprising a first network node providing a radio access network to a mobile device; a second network node coupled to the first network node and providing backhaul routing for the first network node; a controller node, coupled to both the first and the second network node and to a multicast packet gateway, wherein the controller node provides a virtualized interface of a single network node to the multicast packet gateway, thereby virtualizing the first and second network nodes to the multicast packet gateway such that the multicast packet gateway may be enabled to send a multicast data stream to the first and the second network nodes via the controller node.
Abstract:
A heuristic approach to configuration and/or planning for wireless networks is disclosed herein. In one embodiment, statistics relating to mobile device cell usage are collected and monitored. The statistics may include UE measurements (RSRP/RSRQ), UE location, number of connection requests, duration of connectivity, average traffic load associated with the users, channel utilization, and other statistics. Based on statistical analysis of the data collected, neural network analysis, data fitting, or other analysis, adjustments to cell coverage parameters such as handover thresholds, inactivity timer values, contention window size, inter-frame duration, transmit power, DRX cycle duration, or other parameters may be identified.
Abstract:
An approach is disclosed for synchronization of frequency and/or phase in a full duplex network. The method may comprise sending a timing beacon over a single full duplex radio channel from a timing master to a timing slave; receiving the timing beacon over the single full duplex radio channel at the timing slave; sending a retransmitted beacon over the single full duplex radio channel from the timing slave to the timing master; and sending a delta of the timing beacon and the retransmitted beacon from the timing master to the timing slave. The beacon may contain a timestamp. The retransmitted beacon may include a delay calculation. A hybrid analog/digital self-interference cancellation system may be used at the timing master or the timing slave. The method may also include simultaneously sending and receiving the synchronization information over the single full duplex radio channel.
Abstract:
A method for providing multicast services to mobile devices, comprising: providing, at a controller node, an interface representing a single network node to a multicast server node; receiving, at the controller node, link status messages from a first and a second network node; constructing, at the controller node, a multicast route at the controller node based on the received link status messages; receiving, at the controller node, a multicast data stream from the multicast server node; and sending the multicast data stream to at least two mobile devices via the constructed multicast route.
Abstract:
Systems and methods are described for point-to-point and point-to-multipoint full duplex networking. In some embodiments, physical, medium access control (MAC), and routing protocols are integrated. In some embodiments, cross-layer optimization by the use of a full duplex capability table in performing routing and messaging is used to increase the channel utilization of full duplex networks, thereby making it possible for multiple nodes to communicate simultaneously over the same channel. In some embodiments, such full duplex capability is provided using Wi-Fi or Wi-Fi-like wireless protocols in a mesh network.
Abstract:
A method for adjacent channel interference cancellation may be disclosed, comprising collecting adjacent channel usage samples at a first time; assigning coefficient weights in an adjacent channel interference model based on the adjacent channel usage samples; determining whether a radio may be available for measuring current adjacent channel usage; adjusting coefficient weights based on the current adjacent channel usage; and canceling noise in an adjacent channel at a second time based on the coefficient weights. A radio frequency chain may be coupled to the output of the radio transceiver and configured to sample adjacent channel interference caused by the radio transceiver.