Abstract:
Mobile computing devices may be configured to intelligently select, compile, and execute portions of a general purpose software application in an auxiliary processor (e.g., a DSP) of a multiprocessor system. A processor of the mobile device may be configured to determine whether portions of a software application are suitable for execution in an auxiliary processor, monitor operating conditions of the system, determine a historical context based on the monitoring, and determine whether the portions that were determined to suitable for execution in an auxiliary processor should be compiled for execution in the auxiliary processor based on the historical context. The processor may also be configured to continue monitoring the system, update the historical context information, and determine whether code previously compiled for execution on the auxiliary processor should be invoked or executed in the auxiliary processor based on the updated historical context information.
Abstract:
Systems and methods enable displaying a graphical representation of system resource usage in a resource utilization map to inform users about system resource utilization by applications and processes running on a computing device. Users may provide inputs to enable the system to adjust resource allocations based on user preferences. This may enable users to improve the overall operational performance of the device consistent with their current personal preferences by identifying applications or processes of most or least interest so the device processor to prioritize system resources accordingly. Some aspects transmit resource allocation data based on such user input to a central server to enable community based resource allocation schemes. Community based resource allocation schemes may be transmitted to computing devices for use as default or preliminary resource allocations for particular applications, websites or device operating states.
Abstract:
Mobile computing devices may be configured to compile and execute portions of a general purpose software application in an auxiliary processor (e.g., a DSP) of a multiprocessor system by reading and writing information to a shared memory. A first process (P1) on the applications processor may request address negotiation with a second process (P2) on the auxiliary processor, obtain a first address map from a first operating system, and send the first address map to the auxiliary processor. The second process (P2) may receive the first address map, obtain a second address map from a second operating system, identify matching addresses in the first and second address maps, store the matching addresses as common virtual addresses, and send the common virtual addresses back to the applications processor. The first and second processes (i.e., P1 and P2) may each use the common virtual addresses to map physical pages to the memory.
Abstract:
Systems and methods enable displaying a graphical representation of system resource usage in a resource utilization map to inform users about system resource utilization by applications and processes running on a computing device. Users may provide inputs to enable the system to adjust resource allocations based on user preferences. This may enable users to improve the overall operational performance of the device consistent with their current personal preferences by identifying applications or processes of most or least interest so the device processor to prioritize system resources accordingly. Some aspects transmit resource allocation data based on such user input to a central server to enable community based resource allocation schemes. Community based resource allocation schemes may be transmitted to computing devices for use as default or preliminary resource allocations for particular applications, websites or device operating states.
Abstract:
Mobile computing devices may be configured to compile and execute portions of a general purpose software application in an auxiliary processor (e.g., a DSP) of a multiprocessor system by reading and writing information to a shared memory. A first process (P1) on the applications processor may request address negotiation with a second process (P2) on the auxiliary processor, obtain a first address map from a first operating system, and send the first address map to the auxiliary processor. The second process (P2) may receive the first address map, obtain a second address map from a second operating system, identify matching addresses in the first and second address maps, store the matching addresses as common virtual addresses, and send the common virtual addresses back to the applications processor. The first and second processes (i.e., P1 and P2) may each use the common virtual addresses to map physical pages to the memory.