Abstract:
Aspects disclosed herein include trigger circuitry for electrostatic discharge (ESD) protection. In this regard, in one aspect, an ESD protection circuit is provided to protect an integrated circuit (IC) from an ESD event. Trigger circuitry, which includes a voltage divider for example, divides a voltage spike between a supply rail and a ground rail to provide a trigger voltage. An ESD clamping circuitry is activated to discharge the voltage spike when the trigger voltage is determined to exceed an ESD threshold voltage, thus protecting the IC from being damaged by the voltage spike. By activating the ESD clamping circuitry based on the trigger voltage divided from the voltage spike, it is possible to adapt the ESD protection circuit to provide ESD protection based on different ESD threshold voltages, thus making it possible to deploy the ESD protection circuit on ICs having different ESD protection requirements.
Abstract:
Aspects disclosed herein include trigger circuitry for electrostatic discharge (ESD) protection. In this regard, in one aspect, an ESD protection circuit is provided to protect an integrated circuit (IC) from an ESD event. Trigger circuitry, which includes a voltage divider for example, divides a voltage spike between a supply rail and a ground rail to provide a trigger voltage. An ESD clamping circuitry is activated to discharge the voltage spike when the trigger voltage is determined to exceed an ESD threshold voltage, thus protecting the IC from being damaged by the voltage spike. By activating the ESD clamping circuitry based on the trigger voltage divided from the voltage spike, it is possible to adapt the ESD protection circuit to provide ESD protection based on different ESD threshold voltages, thus making it possible to deploy the ESD protection circuit on ICs having different ESD protection requirements.
Abstract:
Aspects disclosed in the detailed description include an electrostatic discharge (ESD) protection circuit. In this regard, in one aspect, an ESD protection circuit is provided to protect an integrated circuit (IC) during fabrication and production. An ESD detection circuitry detects an ESD event by detecting a voltage spike between a supply rail and a ground rail exceeding an ESD threshold voltage. In response to detecting the ESD event, an ESD clamping circuitry is activated to discharge the ESD event, thus protecting the IC from being damaged by the ESD event. By detecting the ESD event based on the ESD threshold voltage, as opposed to detecting the ESD event based on rise time of the voltage spike, it is possible to prevent the ESD clamping circuitry from missing voltage spikes associated with a slow rise time or being falsely activated by a normal power-on voltage associated with a fast rise time.
Abstract:
Aspects disclosed in the detailed description include an electrostatic discharge (ESD) protection circuit. In this regard, in one aspect, an ESD protection circuit is provided to protect an integrated circuit (IC) during fabrication and production. An ESD detection circuitry detects an ESD event by detecting a voltage spike between a supply rail and a ground rail exceeding an ESD threshold voltage. In response to detecting the ESD event, an ESD clamping circuitry is activated to discharge the ESD event, thus protecting the IC from being damaged by the ESD event. By detecting the ESD event based on the ESD threshold voltage, as opposed to detecting the ESD event based on rise time of the voltage spike, it is possible to prevent the ESD clamping circuitry from missing voltage spikes associated with a slow rise time or being falsely activated by a normal power-on voltage associated with a fast rise time.