摘要:
An inter-system handover system for a wireless communication system supports hand-down and hand-up of user equipment (UE) to different radio access technologies, including synchronous and asynchronous systems. Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about neighboring systems (targets) when the UE reception (RX) capability is both inside or outside the reception range of the target. A single RX chain is sufficient, although transitioning between a wireless wide area network (WWAN) to a wireless local area network may (WLAN) may advantageously benefit from simultaneous operation on two Rx chains. Optimized list of neighboring RAT systems (targets) are broadcast from the network, including measurement parameters and reporting instructions. Thereby, UE-driven reporting minimizes latencies. UE reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other-system measurement information, if necessary, for additional efficiencies.
摘要:
An inter-system handover system for a wireless communication system supports hand-down and hand-up of user equipment (UE) to different radio access technologies, including synchronous and asynchronous systems. Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about neighboring systems (targets) when the UE reception (RX) capability is both inside or outside the reception range of the target. A single RX chain is sufficient, although transitioning between a wireless wide area network (WWAN) to a wireless local area network may (WLAN) may advantageously benefit from simultaneous operation on two Rx chains. Optimized list of neighboring RAT systems (targets) are broadcast from the network, including measurement parameters and reporting instructions. Thereby, UE-driven reporting minimizes latencies. UE reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other-system measurement information, if necessary, for additional efficiencies.
摘要:
An inter-system handover system for a wireless communication system supports hand-down and hand-up of user equipment (UE) to different radio access technologies, including synchronous and asynchronous systems. Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about neighboring systems (targets) when the UE reception (RX) capability is both inside or outside the reception range of the target. A single RX chain is sufficient, although transitioning between a wireless wide area network (WWAN) to a wireless local area network may (WLAN) may advantageously benefit from simultaneous operation on two Rx chains. Optimized list of neighboring RAT systems (targets) are broadcast from the network, including measurement parameters and reporting instructions. Thereby, UE-driven reporting minimizes latencies. UE reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other-system measurement information, if necessary, for additional efficiencies.
摘要:
Systems and methodologies are described that facilitate identifying a plurality of keysets utilized in a communications network. The keysets can include ciphering keys that provide data encryption and decryption and integrity keys that provide data integrity protection. A key identifier can be included in a packet data convergence protocol header that indicates a keyset employed in connection with data in a protocol data unit. In addition, a route indicator can be provided in a radio link control header that distinguishes a source cell and a target cell in networks configured without RLC reset.
摘要:
Systems and methodologies are described that facilitate identifying a plurality of keysets utilized in a communications network. The keysets can include ciphering keys that provide data encryption and decryption and integrity keys that provide data integrity protection. A key identifier can be included in a packet data convergence protocol header that indicates a keyset employed in connection with data in a protocol data unit. In addition, a route indicator can be provided in a radio link control header that distinguishes a source cell and a target cell in networks configured without RLC reset.
摘要:
An apparatus, method, processor(s), and computer program product avoids user data loss by network-controlled, user equipment assisted handover in a wireless data packet communication system. A wireless receiver receives radio link control (RLC) packet data units (PDUs) from user equipment (UE) being served by a source node. A wireless transmitter commands the UE to handover. A network communication interface transmits RLC Uplink (UL) context from the source node to the target node, and transmits RLC Downlink (DL) initialization message and buffered in-transit DL RLC PDUs from the source node to the target node.
摘要:
Techniques for sending data during handover with Layer 2 tunneling are described. In one design, a user equipment (UE) sends first Layer 2 packets to a source base station prior to handover to a target base station. The UE sends at least one second Layer 2 packet to the target base station, which identifies the second Layer 2 packet(s) as being intended for the source base station and thus forwards the second Layer 2 packet(s) to the source base station via a Layer 2 tunnel. The UE sends third Layer 2 packets to the target base station after the handover. The target base station processes the third Layer 2 packets to obtain IP packets and sends the IP packets to a serving gateway after a trigger condition, which may be defined to achieve in-order delivery of IP packets from the source and target base stations to the serving gateway.
摘要:
Techniques for sending data during handover with Layer 2 tunneling are described. In one design, a user equipment (UE) sends first Layer 2 packets to a source base station prior to handover to a target base station. The UE sends at least one second Layer 2 packet to the target base station, which identifies the second Layer 2 packet(s) as being intended for the source base station and thus forwards the second Layer 2 packet(s) to the source base station via a Layer 2 tunnel. The UE sends third Layer 2 packets to the target base station after the handover. The target base station processes the third Layer 2 packets to obtain IP packets and sends the IP packets to a serving gateway after a trigger condition, which may be defined to achieve in-order delivery of IP packets from the source and target base stations to the serving gateway.
摘要:
An apparatus, method, processor(s), and computer program product avoids user data loss by network-controlled, user equipment assisted handover in a wireless data packet communication system. A wireless receiver receives radio link control (RLC) packet data units (PDUs) from user equipment (UE) being served by a source node. A wireless transmitter commands the UE to handover. A network communication interface transmits RLC Uplink (UL) context from the source node to the target node, and transmits RLC Downlink (DL) initialization message and buffered in-transit DL RLC PDUs from the source node to the target node.
摘要:
Techniques for transmitting and receiving data in an efficient manner to potentially improve capacity for a wireless network and achieve power savings for a wireless device are described. The techniques utilize a Continuous Packet Connectivity (CPC) mode comprised of multiple (e.g., two) discontinuous transmission (DTX) modes and at least one (e.g., one) discontinuous reception (DRX) mode. Each DTX mode is associated with different enabled uplink subframes usable for transmission from the wireless device to the network. Each DRX mode is associated with different enabled downlink subframes usable by the network for transmission to the wireless device. The wireless device may send signaling and/or data on the enabled uplink subframes and may receive signaling and/or data on the enabled downlink subframes. The wireless device may power down during non-enabled subframes to conserve battery power. Mechanisms to quickly transition between the DTX and DRX modes are described.