Abstract:
A computer-implemented method is presented for synchronizing time between two handheld medical devices that interoperate with each other. The method includes: determining a first time as measured by a first clock residing in the first medical device; determining a second time as measured by a second clock residing in a second medical device; evaluating whether the first clock is synchronized with the second clock; determining whether at least one of the first clock and the second clock was set manually by a user; and setting time of the first clock in accordance with the second time when the second clock was set manually by the user.
Abstract:
An insulin pump is configurable by a configurator. The pump has parameter blocks, each with a respective parameter and an associated restriction setting, and the configurator has an authorization level. Configuring the pump includes receiving, by the configurator, a request to access a parameter on the pump. The method also includes identifying, by the configurator, the parameter block that includes the parameter. Moreover, the method includes retrieving, by the configurator from the pump, the parameter and the associated restriction setting, and comparing, by the configurator, the authorization level of the configurator to the restriction setting. Also, the method includes determining, by the configurator, whether the configurator is authorized to write to the parameter block based on the comparison. Additionally, the method includes writing, by the configurator, to the parameter block on the insulin pump in response to a determination that the configurator is authorized to write to the parameter block.
Abstract:
A method for activating a physician-prescribable feature of an application program executed on a mobile device is disclosed. The method includes receiving, by the application program, an activation code to activate a feature of the application program and one or more parameters associated with a prescription. The method includes transmitting, by the application program, the activation code to a server and receiving an authorization code from the server, where the authorization code indicates a validity of the activation code. The method includes activating, by the application program, the feature using the activation code, the activation being performed in response to the activation code being valid; configuring, by the application program, the activated feature using at least one of the one or more parameters associated with the prescription; and generating, using the activated feature, data based on the one or more parameters associated with the prescription.
Abstract:
A computer-implemented method of operating a diabetes treatment system that includes an insulin pump and a pump controlling device is disclosed. The method includes receiving, by the device, a request for the pump to perform an operation that is dependent on a specified state of the pump. The method also includes requesting, by the device, a current state of the pump from the pump. Moreover, the method includes receiving, by the device, the current state of the pump. Also, the method includes determining, by the device, whether the current state of the pump matches to the specified state of the pump. Additionally, the method includes sending, by the device to the pump, a command to perform the operation in response to a determination that the current state of the pump matches the specified state of the pump.
Abstract:
A method for analyzing diabetes related information by a diabetes management application residing on a computing device. The method may include: receiving a data entry over a communication link from a blood glucose meter, where the data entry includes a glucose measurement and an indicator of a pre-established activity associated with the glucose measurement; evaluating the data entry in relation to a subject structured test based in part by comparing the indicator from the data entry with collection events associated with the subject structured test; identifying the data entry as compatible with the subject structured test when the data entry correlates with a given collection event specified by the subject structured test; identifying the data entry as non-compatible with the subject structured test when the data entry does not correlate with the given collection event specified by the subject structured test; and inputting the data entry into a logbook.
Abstract:
A method for activating a physician-prescribable feature of an application program executed on a mobile device is disclosed. The method includes receiving, by the application program, an activation code to activate a feature of the application program and one or more parameters associated with a prescription. The method includes transmitting, by the application program, the activation code to a server and receiving an authorization code from the server, where the authorization code indicates a validity of the activation code. The method includes activating, by the application program, the feature using the activation code, the activation being performed in response to the activation code being valid; configuring, by the application program, the activated feature using at least one of the one or more parameters associated with the prescription; and generating, using the activated feature, data based on the one or more parameters associated with the prescription.
Abstract:
A diabetes management system having a reliable data management scheme is disclosed. The system comprises a plurality of devices, each device performing a different function relating to treatment of diabetes. Each device has a device identifier and each device generates data records relating to the function of the device. Each device includes a metadata generator configured to generate a metadata tag for a data record generated by the device. A metadata tag includes the device identifier of the corresponding device, a record identifier, and a source identifier indicating whether the record was originated by a human or the device. The system further includes a diabetes management device in communication with the plurality of devices and configured to manage records received from the plurality of devices. When a first device of the plurality of devices generates a new record to be communicated to the diabetes management device, the metadata generator of the first device generates a new unique record identifier and a new metadata tag based on the new unique record identifier and the device identifier of the first device, and the first device propagates the new record and the new metadata tag to the second device.
Abstract:
A computer-implemented method of operating a diabetes treatment system that includes an insulin pump and a pump controlling device is disclosed. The method includes receiving, by the device, a request for the pump to perform an operation that is dependent on a specified state of the pump. The method also includes requesting, by the device, a current state of the pump from the pump. Moreover, the method includes receiving, by the device, the current state of the pump. Also, the method includes determining, by the device, whether the current state of the pump matches to the specified state of the pump. Additionally, the method includes sending, by the device to the pump, a command to perform the operation in response to a determination that the current state of the pump matches the specified state of the pump.
Abstract:
A method for analyzing diabetes related information by a diabetes management application residing on a computing device. The method may include: receiving a data entry over a communication link from a blood glucose meter, where the data entry includes a glucose measurement and an indicator of a pre-established activity associated with the glucose measurement; evaluating the data entry in relation to a subject structured test based in part by comparing the indicator from the data entry with collection events associated with the subject structured test; identifying the data entry as compatible with the subject structured test when the data entry correlates with a given collection event specified by the subject structured test; identifying the data entry as non-compatible with the subject structured test when the data entry does not correlate with the given collection event specified by the subject structured test; and inputting the data entry into a logbook.
Abstract:
An insulin pump is configurable by a configurator. The pump has parameter blocks, each with a respective parameter and an associated restriction setting, and the configurator has an authorization level. Configuring the pump includes receiving, by the configurator, a request to access a parameter on the pump. The method also includes identifying, by the configurator, the parameter block that includes the parameter. Moreover, the method includes retrieving, by the configurator from the pump, the parameter and the associated restriction setting, and comparing, by the configurator, the authorization level of the configurator to the restriction setting. Also, the method includes determining, by the configurator, whether the configurator is authorized to write to the parameter block based on the comparison. Additionally, the method includes writing, by the configurator, to the parameter block on the insulin pump in response to a determination that the configurator is authorized to write to the parameter block.