Abstract:
A method of performing a fracture operation is provided at a wellsite. The wellsite is positioned about a subterranean formation having a wellbore therethrough and a complex fracture network therein. The complex fracture network includes natural fractures, and the wellsite stimulated by injection of an injection fluid with proppant into the complex fracture network. The method involves generating wellsite data comprising measurements of microseismic events of the subterranean formation, modeling a hydraulic fracture network and a discrete fracture network of the complex fracture network based on the wellsite data, and performing a seismic moment operation. The method involves determining an actual seismic moment density based on the wellsite data and a predicted seismic moment density based on shear and tensile components of the simulated hydraulic fracture network, and calibrating the discrete fracture network based on a comparison of the predicted moment density and the actual moment density.
Abstract:
A method of performing a fracture operation is provided at a wellsite. The wellsite is positioned about a subterranean formation having a wellbore therethrough and a complex fracture network therein. The complex fracture network includes natural fractures, and the wellsite stimulated by injection of an injection fluid with proppant into the complex fracture network. The method involves generating wellsite data comprising measurements of microseismic events of the subterranean formation, modeling a hydraulic fracture network and a discrete fracture network of the complex fracture network based on the wellsite data, and performing a seismic moment operation. The method involves determining an actual seismic moment density based on the wellsite data and a predicted seismic moment density based on shear and tensile components of the simulated hydraulic fracture network, and calibrating the discrete fracture network based on a comparison of the predicted moment density and the actual moment density.
Abstract:
A technique facilitates enhanced microseismic monitoring. The technique may be applied to source mechanism identification under, for example, ill-conditioned receiver coverage to enhance the resolvability for microseismic monitoring. The microseismic monitoring may be used in hydraulic fracturing monitoring, induced seismicity monitoring, CO2 injection monitoring, other injection monitoring, mining, and/or other techniques which cause microseismic events.
Abstract:
A technique facilitates enhanced microseismic monitoring. The technique may be applied to source mechanism identification under, for example, ill-conditioned receiver coverage to enhance the resolvability for microseismic monitoring. The microseismic monitoring may be used in hydraulic fracturing monitoring, induced seismicity monitoring, CO2 injection monitoring, other injection monitoring, mining, and/or other techniques which cause microseismic events.
Abstract:
A technique facilitates enhanced microseismic monitoring. In a variety of applications, the technique may be used to enhance the resolvability of moment tensor inversion for ill-conditioned seismic receiver coverage. As a result, microseismic monitoring technique enhances the capability for monitoring many types of naturally occurring and created seismic events. For example, the technique may be employed to enhance hydraulic fracturing monitoring, induced seismicity monitoring, CO2 injection monitoring, other injection monitoring, mining, and/or other techniques which cause microseismic events.
Abstract:
A technique facilitates enhanced microseismic monitoring. In a variety of applications, the technique may be used to enhance the resolvability of moment tensor inversion for ill-conditioned seismic receiver coverage. As a result, microseismic monitoring technique enhances the capability for monitoring many types of naturally occurring and created seismic events. For example, the technique may be employed to enhance hydraulic fracturing monitoring, induced seismicity monitoring, CO2 injection monitoring, other injection monitoring, mining, and/or other techniques which cause microseismic events.