Abstract:
A method of performing a fracture operation at a wellsite about a subterranean formation having a fracture network with natural fractures is provided. The wellsite is stimulated by injection of fluid into the fracture network. The method involves generating wellsite data including natural fracture parameters and obtaining measurements of microseismic events, modeling hydraulic fractures of the fracture network based on the wellsite data and defining a hydraulic fracture geometry of the hydraulic fractures, generating a stress field of the hydraulic fractures using a geomechanical model, determining shear failure parameters comprising a failure envelope and a stress state about the fracture network, determining a location of shear failure of the fracture network from the failure envelope and the stress state, and calibrating the hydraulic fracture geometry by comparing the modeled hydraulic fractures and the locations of shear failure against the measured microseismic events.
Abstract:
A hydraulic fracture design model that simulates the complex physical process of fracture propagation in the earth driven by the injected fluid through a wellbore. An objective in the model is to adhere with the laws of physics governing the surface deformation of the created fracture subjected to the fluid pressure, the fluid flow in the gap formed by the opposing fracture surfaces, the propagation of the fracture front, the transport of the proppant in the fracture carried by the fluid, and the leakoff of the fracturing fluid into the permeable rock. The models used in accordance with methods of the invention are typically based on the assumptions and the mathematical equations for the conventional 2D or P3D models, and further take into account the network of jointed fracture segments. For each fracture segment, the mathematical equations governing the fracture deformation and fluid flow apply. For each time step, the model predicts the incremental growth of the branch tips and the pressure and flow rate distribution in the system by solving the governing equations and satisfying the boundary conditions at the fracture tips, wellbore and connected branch joints. An iterative technique is used to obtain the solution of this highly nonlinear and complex problem.
Abstract:
A hydraulic fracture design model that simulates the complex physical process of fracture propagation in the earth driven by the injected fluid through a wellbore. An objective in the model is to adhere with the laws of physics governing the surface deformation of the created fracture subjected to the fluid pressure, the fluid flow in the gap formed by the opposing fracture surfaces, the propagation of the fracture front, the transport of the proppant in the fracture carried by the fluid, and the leakoff of the fracturing fluid into the permeable rock. The models used in accordance with methods of the invention are typically based on the assumptions and the mathematical equations for the conventional 2D or P3D models, and further take into account the network of jointed fracture segments. For each fracture segment, the mathematical equations governing the fracture deformation and fluid flow apply. For each time step, the model predicts the incremental growth of the branch tips and the pressure and flow rate distribution in the system by solving the governing equations and satisfying the boundary conditions at the fracture tips, wellbore and connected branch joints. An iterative technique is used to obtain the solution of this highly nonlinear and complex problem.
Abstract:
Embodiments herein relate to a method for hydraulic fracturing a subterranean formation traversed by a wellbore including characterizing the formation using measured properties of the formation, including mechanical properties of geological interfaces, identifying a formation fracture height wherein the identifying comprises calculating a contact of a hydraulic fracture surface with geological interfaces, and fracturing the formation wherein a fluid viscosity or a fluid flow rate or both are selected using the calculating. Embodiments herein also relate to a method for hydraulic fracturing a subterranean formation traversed by a wellbore including measuring the formation comprising mechanical properties of geological interfaces, characterizing the formation using the measurements, calculating a formation fracture height using the formation characterization, calculating an optimum fracture height using the measurements, and comparing the optimum fracture height to the formation fracture height.
Abstract:
A method for determining a flow distribution of a wellbore during a wellbore treatment comprises disposing an optical fiber into a wellbore, performing a wellbore treatment in the wellbore with the fiber optic in place by flowing a well treatment fluid from the surface and wellbore and into the formation, taking distributed temperature measurements at a time interval with the fiber optic cable during the wellbore treatment operation, and calculating a flow distribution of the wellbore while performing the wellbore treatment.
Abstract:
A method of performing a fracture operation is provided at a wellsite. The wellsite is positioned about a subterranean formation having a wellbore therethrough and a complex fracture network therein. The complex fracture network includes natural fractures, and the wellsite stimulated by injection of an injection fluid with proppant into the complex fracture network. The method involves generating wellsite data comprising measurements of microseismic events of the subterranean formation, modeling a hydraulic fracture network and a discrete fracture network of the complex fracture network based on the wellsite data, and performing a seismic moment operation. The method involves determining an actual seismic moment density based on the wellsite data and a predicted seismic moment density based on shear and tensile components of the simulated hydraulic fracture network, and calibrating the discrete fracture network based on a comparison of the predicted moment density and the actual moment density.
Abstract:
A system and method for performing stimulation operations at a wellsite having a subterranean formation with of a reservoir therein is provided. The method involves performing reservoir characterization to generate a mechanical earth model based on integrated petrophysical, geomechanical and geophysical data. The method also involves generating a stimulation plan by performing well planning, a staging design, a stimulation design and a production prediction based on the mechanical earth model. The stimulation design is optimized by repeating the well planning, staging design, stimulation design, and production prediction in a feedback loop until an optimized stimulation plan is generated.
Abstract:
A system and method is provided for performing a fracturing operation about a wellbore penetrating a subterranean formation. The method may acquire integrated wellsite data. The method may generate a mechanical earth model using the integrated wellsite data. The method may simulate an intersection of an induced hydraulic fracture with a natural fracture using the mechanical earth model. The method may determine intersection properties of the intersected natural fracture. The method may also generate a stimulation plan using the mechanical earth model and the intersection properties. The stimulation plan may include a fluid viscosity or a rate of injection of a fracturing fluid.
Abstract:
Methods of performing a fracture operation at a wellsite with a fracture network are provided. The methods involve obtaining wellsite data and a mechanical earth model, and generating a hydraulic fracture growth pattern for the fracture network over time. The generating involves extending hydraulic fractures from a wellbore and into the fracture network of a subterranean formation to form a hydraulic fracture network, determining hydraulic fracture parameters after the extending, determining transport parameters for proppant passing through the hydraulic fracture network, and determining fracture dimensions of the hydraulic fractures from the hydraulic fracture parameters, the transport parameters and the mechanical earth model. The methods also involve performing stress shadowing on the hydraulic fractures to determine stress interference between fractures and repeating the generating based on the determined stress interference. The methods may also involve determining crossing behavior.
Abstract:
A system can include one or more processors; memory; a data interface that receives data; a control interface that transmits control signals for control of pumps of a hydraulic fracturing operation; and one or more components that can include one or more of a modeling component that predicts pressure in a well fluidly coupled to at least one of the pumps, a pumping rate adjustment component that generates a pumping rate control signal for transmission via the control interface, a capacity component that estimates a real-time pumping capacity for each individual pump, and a control component that, for a target pumping rate for the pumps during the hydraulic fracturing operation, generates at least one of engine throttle and transmission gear settings for each of the individual pumps using an estimated real-time pumping capacity for each individual pump where the settings are transmissible via the control interface.