SEISMIC TRAVEL TIME TOMOGRAPHIC INVERSION METHOD BASED ON TWO POINT RAY TRACING

    公开(公告)号:US20190113641A1

    公开(公告)日:2019-04-18

    申请号:US15950350

    申请日:2018-04-11

    Abstract: The present application provides a seismic travel time tomographic inversion method based on two-point ray tracing comprising: collecting seismic data including direct wave travel time and reflected wave travel time; establishing an initial one-dimensional continuously layered model having continuously a varying intraformational velocity; representing a ray parameter p by a variable q, representing a source-receiver distance X by a function X=f(q) of the variable q, solving the function X=f(q) using a Newton iteration method; calculating a theoretical direct wave travel time and reflected wave travel time according to the ray parameter p; comparing the calculated theoretical arrival time with actual arrival time, using an optimal algorithm to adjust velocity parameters of the initial one-dimensional continuously layered model, until a difference between the theoretical direct wave travel time and reflected wave travel time and the actual direct wave travel time and reflected wave travel time complies with a predetermined error standard.

    METHOD, DEVICE AND TERMINAL FOR DETERMINING BOREHOLE CROSS-SECTIONAL SHAPE

    公开(公告)号:US20190085684A1

    公开(公告)日:2019-03-21

    申请号:US15970490

    申请日:2018-05-03

    Abstract: A method, device, terminal and computer readable storage medium for determining a cross-sectional shape of a borehole involves obtaining a plurality of logging data items as measured at a same depth of a well via a multi-arm caliper. The logging data items include pad coordinates which use a center of the multi-arm caliper as a reference point. Coordinates of a borehole center and a borehole radius at the depth of the well are obtained by using a least squares objective function with a constraint condition and according to the pad coordinates. The constraint condition is that a distance from a pad of a caliper tool to the borehole center is larger than or equal to the borehole radius. The pad positions are located outside a circle or on the circle obtained by fitting according to the least squares objective function, such that a real borehole cross-sectional shape is obtained. Measuring errors of well logging are reduced, and the reliability of the measurement of the borehole cross-sectional shape is improved.

Patent Agency Ranking