Abstract:
Innovative new methods in connection with lighter-than-air (LTA) free floating platforms, of facilitating legal transmitter operation, platform flight termination when appropriate, environmentally acceptable landing, and recovery of these devices are provided. The new systems and methods relate to rise rate control, geo-location from a LTA platform including landed payload and ground-based vehicle locations, and steerable recovery systems.
Abstract:
Innovative new methods in connection with lighter-than-air free floating platforms, of facilitating legal transmitter operation, platform flight termination when appropriate, environmentally acceptable landing, and recovery of these devices are provided. Especially, termination of radio transmissions and flight related to regional, governmental and international border requirements, regulations and laws. The new methods comprise specific criteria, detection of the criteria and elements of operation for reducing or preventing illegal transmissions, for producing rapid descend to the ground, for environmentally acceptable landing and for facilitating recovery all with improved safety and enhanced compliance with known regulations.
Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon comprising a gas enclosure; a geographic locator or tracking system configured to determine geographical coordinates of the unmanned balloon; a payload comprising a transceiver, wherein the transceiver is capable of communicating with communication devices that are separate from the unmanned balloon; first and second flight-termination devices each configured to cause termination of a flight of the unmanned balloon; and at least two power sources each configured to provide power to at least one of the first and second flight-termination devices.
Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon; a payload that is separate from the unmanned balloon; a transceiver; a flight termination device; at least two separate power sources; a sensor; a processor; a pump; a valve; and an object that when broken separates the unmanned balloon and the payload, are disclosed herein.
Abstract:
Innovative new methods in connection with lighter-than-air (LTA) free floating platforms, of facilitating legal transmitter operation, platform flight termination when appropriate, environmentally acceptable landing, and recovery of these devices are provided. The new systems and methods relate to rise rate control, geo-location from a LTA platform including landed payload and ground-based vehicle locations, and steerable recovery systems.
Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon; a payload that is separate from the unmanned balloon; a transceiver; first and second flight termination devices; at least two separate power sources for the first and second flight termination devices; a sensor; a processor; a pump; a valve; and a tether that when broken separates the unmanned balloon and the payload, are disclosed herein.
Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon; a payload that is separate from the unmanned balloon; a transceiver; first and second flight termination devices; at least two separate power sources for the first and second flight termination devices; a sensor; a processor; a pump; a valve; and a tether that when broken separates the unmanned balloon and the payload, are disclosed herein.
Abstract:
Devices, methods and systems for minimizing the probability of a collision between an aircraft and a floating platform are described. The device may include a processor in communication with a memory. The processor is configured to obtain a flight-path vector of an aircraft; determine a probability related to a plurality of flight-paths of a floating platform over a period of time based on operating parameters for the floating platform and weather data; and determine, based on the flight-path vector and the probability related to the plurality of flight-paths of the floating platform, a time and/or a location for launch or recovery of the floating platform that minimizes a probability of a collision between the aircraft and the floating platform while the floating platform is in flight.
Abstract:
Innovative new methods in connection with lighter-than-air (LTA) free floating platforms, of facilitating legal transmitter operation, platform flight termination when appropriate, environmentally acceptable landing, and recovery of these devices are provided. The new systems and methods relate to rise rate control, geo-location from a LTA platform including landed payload and ground-based vehicle locations, and steerable recovery systems.
Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon; a payload that is separate from the unmanned balloon; a transceiver; first and second flight termination devices; at least two separate power sources for the first and second flight termination devices; a sensor; a processor; a pump; a valve; and a tether that when broken separates the unmanned balloon and the payload, are disclosed herein.