Abstract:
Color signals to be displayed on a colored display surface and having a first gamut in a color space, are subjected to radiometric compensation. An embodiment includes displaying on the colored surface a set of control points of a known color, acquiring via a camera the control points as displayed on the colored surface and evaluating at least one second color gamut of the control points displayed on the colored surface. The second color gamut(s) is/are misaligned with respect to the first color gamut due to the display surface being a colored surface. The method may also include evaluating as an intersection gamut, the misalignment of the second color gamut(s) with respect to the first color gamut, calculating the color transformation operator(s) as a function of the misalignment evaluated, and applying the color transformation operator(s) to the color signals for display on the colored display surface.
Abstract:
Color images designed to be displayed, for example, with a projector such as a laser pico projector, are subjected to gamut extension in respective iso-hue paths in the CIE1931xyY color space, operating for example, as follows: a plurality of iso-hue curves in the CIE1931xyY color space is determined; for the points subjected to gamut extension, the closest iso-hue curves are identified; and extension paths to be used for the operation of gamut extension are interpolated from said closest iso-hue curves.
Abstract:
Color images designed to be displayed, for example, with a projector such as a laser pico projector, are subjected to gamut extension in respective iso-hue paths in the CIE1931xyY color space, operating for example, as follows: a plurality of iso-hue curves in the CIE1931xyY color space is determined; for the points subjected to gamut extension, the closest iso-hue curves are identified; and extension paths to be used for the operation of gamut extension are interpolated from said closest iso-hue curves.
Abstract:
A system and method for determining handedness in a device. The system including a first electrode, a second electrode, a sensor, and a processing circuit coupled to each other. The first electrode is placed at a first location, and the second electrode is placed at a second location on the device—the first location is different from the second location. The electrodes are configured to sense a variation in an electrostatic field in response to a user interacting with the device. The sensor detects a differential potential between the first electrode and the second electrode, and the processing circuit determines whether the user is interacting with the device using a left hand or a right hand. The determining is based on data received from the sensor corresponding to the differential potential.
Abstract:
Color signals to be displayed on a colored display surface and having a first gamut in a color space, are subjected to radiometric compensation. An embodiment includes displaying on the colored surface a set of control points of a known color, acquiring via a camera the control points as displayed on the colored surface and evaluating at least one second color gamut of the control points displayed on the colored surface. The second color gamut(s) is/are misaligned with respect to the first color gamut due to the display surface being a colored surface. The method may also include evaluating as an intersection gamut, the misalignment of the second color gamut(s) with respect to the first color gamut, calculating the color transformation operator(s) as a function of the misalignment evaluated, and applying the color transformation operator(s) to the color signals for display on the colored display surface.
Abstract:
A system and method for determining handedness in a device. The system including a first electrode, a second electrode, a sensor, and a processing circuit coupled to each other. The first electrode is placed at a first location, and the second electrode is placed at a second location on the device—the first location is different from the second location. The electrodes are configured to sense a variation in an electrostatic field in response to a user interacting with the device. The sensor detects a differential potential between the first electrode and the second electrode, and the processing circuit determines whether the user is interacting with the device using a left hand or a right hand. The determining is based on data received from the sensor corresponding to the differential potential.
Abstract:
An embodiment relates to a method for converting a digital image from a first color space to a second color space. The first color space is associated with an electronic source device, and the second color space is associated with a projection apparatus of digital images on a screen and coupled to the source device. The method includes: performing a first conversion on a first triad of parameters associated to the first color space by a first conversion matrix to map such a first triad in a third triad of parameters; the third triad is representative of a color space independent from the first and the second color spaces; performing a second conversion on the third triad of parameters by a second conversion matrix to map such a third triad of parameters in a second triad of parameters representative of the second color space. An embodiment of the step of performing the second conversion includes a step of computing the coefficients of the second conversion matrix based on at least one first piece of information representative of a variable distance between the projection apparatus and the screen.
Abstract:
Color signals to be displayed on a colored display surface and having a first gamut in a color space, are subjected to radiometric compensation. An embodiment includes displaying on the colored surface a set of control points of a known color, acquiring via a camera the control points as displayed on the colored surface and evaluating at least one second color gamut of the control points displayed on the colored surface. The second color gamut(s) is/are misaligned with respect to the first color gamut due to the display surface being a colored surface. The method may also include evaluating as an intersection gamut, the misalignment of the second color gamut(s) with respect to the first color gamut, calculating the color transformation operator(s) as a function of the misalignment evaluated, and applying the color transformation operator(s) to the color signals for display on the colored display surface.