Abstract:
An architecture of an ignition and/or injection managing system for an internal combustion engine, of the type structured to cooperate with an electronic engine control unit. Also included is an electronic device architecture for determining the operating phase of an internal combustion motor, of the type structured for cooperating with an electronic motor control unit and inputting a signal issued from a sensor of a phonic wheel associated with the motor camshaft. This device has the task of computing the operating phase by analyzing the signal from the sensor of the driving shaft phonic wheel, so as to release the electronic motor control unit from monitoring the phonic wheel signal, in order to lighten its computational load, and to enable the processing of the signal issuing from a variety of the phonic wheels more commonly used in the automotive industry. The device has the task of calculating the angular position of the driving shaft by analyzing the signal transmitted by the tone wheel of the driving shaft, thereby releasing the engine electronic control unit from the monitoring of the driving shaft angular position to reduce its computational load and allow to process the signal transmitted by a plurality of tone wheels highly widespread in the automotive field. A module is provided that is capable of emitting an interrupt signal toward said control unit on the basis of signals received by said second module.
Abstract:
A robust communication system for transmitting through a noisy environment includes a signal source for providing discrete signals, a chaotic modulator for modulating the discrete signals, and an incoherent discriminator or receiver for receiving the modulated signals. The incoherent discriminator includes a high-pass filter for removing the lowest frequency harmonics of the received signals, a rectifier for providing an absolute value of the received signals, a low-pass filter and a comparator after the low-pass filter.