Abstract:
A scan driver includes: a blocking circuit configured to receive a scan control signal and to block the scan control signal lower than a predetermined first reference voltage and higher than a predetermined second reference voltage, wherein the second reference voltage is higher than the first reference voltage; and a plurality of stages configured to output scan signals in response to the scan control signal, wherein the blocking circuit includes: a first block circuit configured to block the scan control signal lower than the first reference voltage; and a second block circuit configured to block the scan control signal higher than the second reference voltage.
Abstract:
A liquid crystal display apparatus includes a display panel, a light source module configured to provide light to the display panel, a receiving container receiving the light source module therein, and an adhesion member disposed between the display panel and the receiving container to couple the display panel to the receiving container. The adhesion member includes a base layer with a hollow pocket therein and an adhesion layer disposed on both surface of the base layer. When the display panel is deformed, the adhesion member conforms thereto. Thus, light-leakage of the display panel may be prevented and light characteristics of the liquid crystal display apparatus may be improved.
Abstract:
A display device includes a display area including gate lines; a plurality of gate drivers disposed in a non-display area that is adjacent to the display area and connected to the gate lines; and a driving power transmitting line disposed in the non-display area and providing a driving power to the gate drivers. The driving power transmitting line includes a first driving power transmitting line and a second driving power transmitting line overlapping each other with an insulating layer disposed therebetween, the first driving power transmitting line and the second driving power transmitting line are connected with each other through a plurality of contact holes formed in the insulating layer, and the contact holes are disposed in a plurality of regions respectively overlapping the gate drivers in a direction parallel to an extending direction of the gate lines.
Abstract:
A display device includes a display panel including a plurality of pixels, a controller configured to output image data and a gated clock signal, the image data including a plurality of pixel data for the plurality of pixels, and a data driver configured to receive the image data and the gated clock signal from the controller, and to sample the image data in response to the gated clock signal. The controller detects a repeated data pattern where same pixel data is repeated in the image data, generates a clock enable signal having an off level in a period in which the repeated data pattern is transferred, and gates an input clock signal in response to the clock enable signal to produce the gated clock signal.
Abstract:
A display apparatus includes a printed circuit board (PCB). A power management integrated circuit (PMIC) is mounted on the PCB and is configured to generate first to fourth gate clock signals and first to fourth inversion gate clock signals. A phase of the first gate clock signal partially overlaps a phase of the second to fourth gate clock signal. Each of the first to fourth inversion gate clock signals has a phase opposite to that of a respective one of the first to fourth gate clock signals. A gate driver generates a plurality of gate signals based on the first to fourth gate clock signals and the first to fourth inversion gate clock signals and applies the plurality of gate signals to a plurality of gate lines. A display panel is connected to the plurality of gate lines.
Abstract:
A circuit board for a display device includes: a signal line to transmit signal, a first metallic layer overlapping the signal line, a first conductive layer spaced apart from the first metallic layer, a base layer insulating the signal line from the first metallic layer and from the first conductive layer, and a first capacitor including a first terminal electrically coupled to the first metallic layer and a second terminal electrically coupled to the first conductive layer.
Abstract:
A display device including a display panel which displays images, an intermediate frame on which the display panel is seated, a lower receptacle which includes a first receiving portion including a bottom plate and sidewalls, and a second receiving portion separate from the first receiving portion, and a light source unit which includes an alignment plate and a point light source mounted on the alignment plate. The light source unit contacts the sidewalls of the lower receptacle, and the first receiving portion is coupled with the intermediate frame.
Abstract:
A method for displaying a three-dimensional (“3D”) image, wherein the method includes; sequentially displaying a left frame image corresponding to a left eye and a right frame image corresponding to a right eye on a display panel, blocking a light provided to a display block of the display panel when the display block displays a mixed image which includes a left eye image of the left frame image corresponding to the left eye and a right eye image of the right frame image corresponding to the right eye, and providing the light to the display block of the display panel when the display block displays only one of the left eye image and the right eye image.
Abstract:
A display device includes a display area including gate lines; a plurality of gate drivers disposed in a non-display area that is adjacent to the display area and connected to the gate lines; and a driving power transmitting line disposed in the non-display area and providing a driving power to the gate drivers. The driving power transmitting line includes a first driving power transmitting line and a second driving power transmitting line overlapping each other with an insulating layer disposed therebetween, the first driving power transmitting line and the second driving power transmitting line are connected with each other through a plurality of contact holes formed in the insulating layer, and the contact holes are disposed in a plurality of regions respectively overlapping the gate drivers in a direction parallel to an extending direction of the gate lines.
Abstract:
A display device includes: a display panel; an input sensor disposed on the display panel; a flexible circuit board connected to the display panel and the input sensor; a first differential signal line and a second differential signal line, which are disposed on the flexible circuit board and connected to the display panel; and a transmission line and a receiving line, which are disposed on the flexible circuit board and connected to the input sensor. In a plan view, the receiving line is disposed between the first differential signal line and the second differential signal line.